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Abstract: Introduction: During the perioperative period, 
acute kidney injury (AKI) is a serious complication with 
increased short- and long-term mortality (1, 2, 3). In former 
studies, the incidence of AKI following hepatobiliary 
surgery varied between 5.1 and 15.5% (10, 11, 13-15). 
The aim of the study is to examine the perioperative risk 
factors for development of AKI in patients undergoing 
liver surgery and to compare predictive models made by 
supervised decision tree models.
Methods: In this retrospective cohort study, patients 
who had undergone liver surgery between March 2010 
and December 2017 in Ghent University Hospital 
were screened after ethical committee approval. A set 
of preoperative and postoperative laboratory results, 
surgery and patient characteristics were collected. To 
create a predictive model, the dataset was randomly 
divided into a training set (60%) to train the model and 
a test set (40%) to analyze the accuracy of the model. 
To train the model, tree-based models were used in the 
form of a simple tree, pruned tree, bagging trees, random 
forests and boosting trees.
Results: 1162 patients were analyzed and because of 
missing data, 602 patients had to be excluded from 
the dataset. The misclassification error of the different 
decision tree models varied between 3.12% and 4.02%. 
Random forests is the prediction model with the lowest 
misclassification error of 3.12%. The difference in serum 
creatinine immediately after surgery is ranked as the 
highest predictor with a relative influence of 50% in 
the boosting trees model. This predictor is followed by 
postoperative serum creatinine with a relative influence 
of 13%. At the third place is preoperative hemoglobin 
with a relative influence of 9.2%.
Conclusion: Decision tree models can predict AKI after 
hepatobiliary surgery in this study. Of all the predictive 
models, random forests had the lowest misclassification 
rate and this model should be explored more often in 
future research trials.

Keywords: Acute Kidney Injury; decision tree models; 
liver surgery; prediction model.

IntroductIon

During the perioperative period, acute 
kidney injury (AKI) is a serious complication with 
increased short- and long-term mortality (1, 2, 
3). AKI can develop in patients with and without 

comorbidities and it is a syndrome that can be 
reversed (4). Major surgery is the second leading 
cause of AKI but still it remains underdiagnosed in 
the perioperative period (5). To have an accurate 
diagnosis and prognostication of AKI, a consistent 
and standardized definition of AKI is crucial. On top 
of that, a uniform definition allows the comparison 
of studies and is therefore important both in the 
clinical and research settings. These definitions 
have started in 2004 with the Risk, Injury, Failure, 
Loss of kidney function, and End-stage kidney 
disease (RIFLE) definition and classification 
criteria ref. This was followed by the Acute Kidney 
Injury Network (AKIN) criteria in 2007 ref . Finally 
the Kidney Disease: Improving Global Outcomes 
(KDIGO) classification system, published in 
2012, combined the 2. This classification system is 
globally used as the uniform definition for AKI.

Over the last 2 decades, the incidence of 
acute kidney injury (AKI) has grown due to this 
new definition (4). But other factors such as an 
increasingly aging population, increased prevalence 
of diabetes, increasing number of comorbidities 
of the hospitalized population and the liberal use 
of intravenous contrast agents for imaging and 
intervention procedures contribute to the higher 
incidence of AKI (6, 7).

Nevertheless, major surgery remains a pro-
minent cause of AKI in hospitalized patients, 
responsible for up to 40% of in-hospital AKI cases 
(5, 7, 8). The incidence of AKI in this group of 
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a class of machine learning models that represent 
information in a clear way. This study will use 
different kinds of tree models and it will determine 
which model has the best predicting power for 
developing perioperative AKI.

methods

Patients and study design

This study has gotten the approval of the ethics 
committee of the University Hospital Ghent to 
start his retrospective cohort study. This study was 
registered with the local code EC/2016/0803and 
with number B670201628986 for Belgium. In-
dividual informed consent was waived because of 
the retrospective nature of this study. Patients who 
had undergone liver surgery between March 2010 
and December 2017 in Ghent university hospital 
were screened. The researchers collected the 
data out of the electronic patient records from the 
hospital. A set of preoperative and postoperative 
laboratory results, type of surgery, type of resection, 
duration of the surgery and patient characteristics 
were collected. Preoperative hemoglobin (g/dl), 
hematocrit (%), thrombocytes (x109/L), pro-
thrombin (%), fibrinogen (g/L), creatinine (mg/dl) 
and liver transaminases (U/L) were analyzed in the 
blood samples and the same laboratory results were 
screened each day until day 7 postoperatively. The 
method of surgery was divided into laparoscopy 
and laparotomy. The type of resection was divided 
into 10 categories. Diabetes, arterial hypertension, 
ischemic cardiomyopathy, chronic obstructive pul-
monary disease and peripheral vascular disease 
belonged to the patient characteristics that were 
determined, according to the study of Kheterpal et al 
(23). Furthermore, the changes of serum creatinine 
and hemoglobin were calculated immediately 
after surgery. The diagnosis of postoperative AKI 
was done according to the previously mentioned 
KDIGO criteria, solely based on serum creatinine 
over a period of 7 days. 

Statistics

Training and test data sets

The prediction process to classify patients 
into having a form of AKI or not has a learning 
step and a prediction step. In the learning step, the 
model is developed based on given training data. In 
the prediction step, the model is used to predict the 
response for given data. As depicted in the flowchart 

patients is variable though, depending on the surgical 
setting and the definition that was used for AKI (9). 
Post-operative development of AKI has especially 
been studied in cardiovascular surgery. However, 
these results can’t be extrapolated automatically to 
abdominal surgery because of the absence of the 
cardiopulmonary pump (10). Liver surgery also 
may cause important fluid shifts and blood loss 
(11). It has a high risk of postoperative AKI with 
unique features due to the underlying diseases 
of the patients as well as surgical and anesthetic 
management considerations (12). In former studies, 
the incidence of AKI following hepatobiliary 
surgery varied between 5.1 and 15.5%. The majority 
of these patients in all studies were placed in the less 
severe stage of AKI (Stage 1) (10, 11, 13-15).

Previous studies have shown that AKI is a 
serious perioperative complication and is associated 
with increased costs, prolonged hospital stay, and 
both short- and long-term mortality (1, 2, 3, 10, 16). 

Functional markers such as serum creatinine 
and urine output are essential in the KDIGO 
definition of AKI but these markers only become 
abnormal later on in the course of the syndrome 
(18). Earlier detection of AKI may improve patient 
outcomes and the prevention of further renal harm. 
A method that detects AKI early on could potentially 
lead to improved patient outcomes and decreased 
costs (4, 17, 19). Risk scores could be useful because 
they combine information available at a moment 
where decisions might be taken. These scores 
have the purpose to get an adequate preoperative 
evaluation of the postoperative risk for AKI. It is 
of specific importance because the kidney function 
can be influenced by some modifiable factors in 
the interdisciplinary perioperative management 
process (21). There is increasing knowledge about 
the pathophysiology of AKI but specific treatments 
remain scarce. Interventions are generally started 
when there is an elevation of serum creatinine or 
decrease in urine output. These are only addressing 
already existing kidney damage but not ongoing 
kidney injury. Thus there should be more focus 
and increasing efforts on the early detection and 
prevention of AKI. Newly established biomarkers 
could help predict AKI after major surgery (20, 24). 
Various predicting scoring systems already have 
been created but the predictive accuracy of these 
models remain suboptimal (9, 22, 23). 

The aim of the study is to examine the peri-
operative risk factors for development of AKI in 
patients undergoing liver surgery. Furthermore, the 
additional goal is to compare predictive models 
made by decision tree models. Decision trees are 
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patients developed some kind of AKI postoperatively. 
21 of these developed an AKI in KDIGO stage 1, 5 
patients developed KDIGO stage 2 and 4 patients 
developed KDIGO stage 3. Following the data 
management flowchart as depicted in figure 1, these 
560 patients were randomized in a training set with 
336 patients and a testing set with 224 patients. 
In the training set, 18 patients developed a form 
of AKI. 12 patients developed KDIGO stage 1, 3 
patients developed KDIGO stage 2 and 3 patients 
developed KDIGO stage 3. In the testing set to 
evaluate the models, 12 of 224 patients developed 
a form of AKI. 9 patients acquired KDIGO stage 
1, 2 patients acquired KDIGO stage 2 and 1 patient 
acquired KDIGO stage 3. 

below (Fig. 1), the raw dataset was narrowed down 
to a complete dataset without missing data. To 
create a predictive model, the dataset was randomly 
divided into a training set (60%) to train the model 
and a test set (40%) to analyze the accuracy of the 
model. 

Tree based models

To train the model, decision trees were used. To 
split the data, specific predictor selection measures 
are being used to select the best predictor. With 
more than one predictor taking part in the decision-
making process, it is necessary to decide the rele-
vance and importance of each of the predictors, 
thus placing the most relevant at the root node and 
further traversing down by splitting the nodes. As we 
move further down the tree, the level of uncertainty 
decreases, thus leading to a better classification or 
best split at every node. To decide these, splitting 
measures such as the misclassification error rate 
and the Gini coefficient were used. However even 
after pruning the tree to correct for overfitting, it is 
often not competitive with other methods in terms 
of prediction accuracy. A large bias for simple 
trees and a large variance for complex trees will be 
present. Methods where groups of trees are used, 
have a better prediction performance than utilizing 
a single decision tree. These ensemble methods are 
based on the hypothesis that combining multiple 
models together can often produce a much more 
powerful predicting model (Figure 2). In the 
generated models there are 2 classifications: true or 
false. True means the occurrence of AKI and false 
means the absence of AKI. 

Software

Statistical analysis was done using R version 
3.6.1. The specific packages used were ‘trees’ (v.1.0-
40), Random forests (v. 4.6-14), ‘gbm’ (v.2.1.5) 
and ‘caret’(v 6.0-85) for modeling and testing the 
specific tree based algorithms.

results

Because of missing data, 602 patients had to 
be excluded from the dataset. 560 patients with 
complete data remained. The final predictors that 
were used to create the predicting models were 
preoperative laboratory results, preoperative known 
patient characteristics, method of surgery, type of 
resection and immediately postoperative laboratory 
results. Of these 560 patients with complete data, 30 

Simple Tree

Based on the training dataset, a simple tree with 
6 terminal nodes can be made (Fig. 2). In the root 
node of this tree, the dataset is split by the difference 
in serum creatinine immediately after surgery and 
preoperatively. The threshold of the difference is 
set at 0.205 mg/dl. This split generates two internal 
nodes which have preoperative hemoglobin as the 
predictor for the next split. The thresholds for these 
are different: 11.75 g/dl when DeltaCreat is lower 
than 0.205 mg/dl and 14.55 g/dl when DeltaCreat 
is higher than 0.205 mg/dl. If the preoperative 

Flow diagram
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Testing data AKI

Simple Tree Model AKI

False True Total Prediction

False 209 6 215

True 3 6 9

Total Testing 212 12

Pruned Tree Model AKI

False 211 7 218

True 1 5 6

Total Testing 212 12

Bagging Tree Model AKI (n=125 trees)

False 211 7 218

True 1 5 6

Total Testing 212 12

Random Forests Model AKI (n=125 trees)

False 212 7 219

True 0 5 5

Total Testing 212 12

Boosting Trees Model AKI (n=510 trees)

False 210 6 216

True 2 6 8

Total Testing 212 12

Table 1

Contingency tables of decision tree models

Fig. 1. — Simple decision tree generated by using training set. 
DeltaCreat = The difference in serum creatinine immediately 
postoperative and preoperative; PreHb = Preoperative hemo-
globin; PreCreat = Preoperative serum creatinine; OpDuur_u = 
Length of surgery in hours.

hemoglobin is lower than 11.75 g/dl, another 
internal node is made with preoperative creatinine 
as the predictor. When the preoperative hemoglobin 
is higher than 11.75 g/dl, the terminal node with 
classification false occurs. If the preoperative 
serum creatinine is lower than 1.11 mg/dl, another 
internal node is made with the length of surgery as 
predictor. When the preoperative serum creatinine 
is higher than 1.11 mg/dl, the terminal node with 
classification false occurs. The threshold of length of 
surgery is at 6.7 hours. Both outcome classifications 
of this predictor are the same: false. The results of 

applying the simple tree model to the testing dataset 
can be found in table 1. Here, 12 patients developed 
a form of AKI and 212 patients did not develop 
AKI. The model predicted 9 out of 224 patients 
to develop AKI. Thus 3 patients were wrongly 
classified. In total, there were 9 mispredictions in 
224 cases of the testing data. The model predicted 
6 patients to not have an AKI, but they actually did 
and it predicted 3 patients to have an AKI but they 
actually did not. There were 6 correct predictions of 
patients developing AKI. The misclassification rate 
of this predicting model is 4%.

Pruned Tree

Using a 10-fold cross-validation, a subtree 
is formed with only 1 root node and two terminal 
nodes. If the difference in serum creatinine 
immediately after surgery is lower than 0.205 mg/
dl, there is no prediction of AKI. If the difference 
is higher than 0.205 mg/dl, the classification of 
AKI occurs. The results of applying the pruned tree 
model to the testing dataset can be found in table 1.

Bagging Trees

As depicted in figure 2, the misclassification 
error is outlined next to how many trees are used 
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In table 3, a summary of the different tree 
based prediction models can be found. The 
misclassification error, sensitivity and specificity 
is depicted for each model. The misclassification 
error of the different decision tree models varied 
between 3.12% and 4.02%. Random forests is the 
prediction model with the lowest misclassification 
error of 3.12%. The pruned tree model, bagging 
trees model and the boosting trees model have the 
same misclassification error of 3.57%. The model 

and thus how many bootstrap samples are used to 
generate the prediction value. Because of the deep 
decline at the beginning, a bagging tree model is 
made with 125 bootstrap samples. The results of 
applying the bagging trees model to the testing 
dataset can be found in table 1.

Random Forests

In the random forests model, the misclas-
sification error shows a deep decline for the first 100 
trees for both the training and the testing dataset. A 
Random Forests model is made with 125 bootstrap 
samples. The results of applying the random forests 
model to the testing dataset can be found in table 1.

Boosting trees

Represented in figure 4 above, the Bernoulli 
deviance (= a measure for misclassification error for 
boosting) takes a deep dive for the first 250 trees for 
both the training and testing dataset. For the training 
dataset, the Bernoulli deviance becomes smaller 
as the number of trees accumulate. For the testing 
dataset however, after 510 trees, the Bernoulli 
deviance rises again. The results of applying the 
boosting trees model to the testing dataset can be 
found in table 1.

In table 2, the different predictors are shown 
with their relative influence in the boosting 
trees model. The difference in serum creatinine 
immediately after surgery and preoperatively is 
ranked highest with a relative influence of 50%. 
This predictor is followed by postoperative serum 
creatinine with a relative influence of 13%. At 
the third place is preoperative hemoglobin with a 
relative influence of 9.2%.

Fig. 2. — Bagging Trees showing the trend of misclassification 
in relation to the number of trees that were used.

Fig. 3. — Boosting trees showing the trend of misclassification 
in relation to the number of trees that were used. The black line 
is the trend for the training dataset and the green line is the trend 
for the testing dataset.

Predictor Relative Influence

DeltaCreat 50.01

Postoperative serum creatinine 13.03

Preoperative hemoglobin 9.22

Postoperative INR 9.13

Preoperative serum creatinine 4.13

DeltaHb 2.98

Postoperative hemoglobin 2.67

Preoperative INR 2.56

Left hepatectomy 1.45

Age 1.09

Preoperatively trombocytes 1.07

Postoperatively trombocytes 1.06

Ischemic cardiomyopathy 0.90

Length of surgery 0.35

Gender 0.15

Type of resection 0.10

Diabetes mellitus 0.08

Table 2

Representation of the relative influence of the different 
predictors in percentage
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predicting model, a negative likelihood ratio of 0.58 
can be calculated. A high amount of false negatives 
is not a good characteristic for a predicting tool. 
In clinical practice, it is important to optimize 
the sensitivity and specificity for conditions that 
have a wide range of prevalence. When a patient 
is wrongly classified as false positive, some 
preventive strategies can be less harmful than when 
a patient is wrongly classified as false negative and 
no interventions are done. 

It can be interesting to compare predictive 
models made by decision tree models because of 
their clarity of representing information. A decision 
tree can convey a lot by the way it is built. In the 
models, there are 2 classifications: true or false. For 
the simple tree, 2 major regions can be visualized: 
non-AKI on the left and the development of AKI on 
the right. These regions are more clearly visualized 
in the pruned tree, where only 2 leaf nodes are 
remaining: false on the left and true on the right. 
Furthermore in the simple tree, the length of the 
branches are long at the first split made by the 
DeltaCreat predictor and are smaller further down. 
This means a great decrease in impurity at the first 
split of the dataset. This also represents itself when 
the relative influence of the different predictors 
is calculated. DeltaCreat is the one with the most 
influence for the prediction of AKI with a relative 
percentage of 50. It emphasizes that a kidney 
function test with serum creatinine immediately 
after surgery is very important in our prediction for 
AKI. This can be done when the patient arrives on 
intensive care or the post anesthesia care unit. 

Despite several interesting findings, this study 
has some limitations. Because these prediction 
models present a retrospective study, no strong 
conclusions can be drawn about the performance in 
a live clinical setting. The retrospective aspect led 
to incomplete data and information bias because of 
rudimentary registration of parameters. Furthermore, 
the absence of several possible predictors could have 
delayed our prediction of AKI in the perioperative 
period. The predictive accuracy of the models may 
also be different in prospective settings if they are 
implemented on patient populations which vary 
considerably from the population in this study. It 
can be said that the purpose of a predictive model 
is to predict the outcome of AKI with an accurate 
probability at an early stage. This way, effective 
preventive interventions can be undertaken. In this 
study however, our most important parameter is the 
difference in serum creatinine immediately after 
surgery and this can only be measured late in the 
perioperative period. In future prospective research, 

with the highest value is the single tree model which 
has a misclassification error of 4.02%.

dIscussIon

In this study, 5 different types of tree-based 
models were tested to predict AKI after liver 
surgery. The misclassification error of the different 
decision tree models varied between 3.12% and 
4.02%. These trees try to keep the error as low 
as possible and based on this, random forests 
was the most accurate prediction model with the 
lowest error rate of 3.12%. We have found that the 
difference in serum creatinine, postoperative serum 
creatinine and preoperative hemoglobin are the 
predictors with the most influence for the prediction 
of AKI. This means our models are making their 
predictions mainly based on these parameters. In 
contrast with the Kheterpal et al. predictive study, 
the preoperative patient characteristics were not as 
important in our study and had no big influence in 
the prediction of AKI (23).

It isn’t a surprise that the single tree model has 
the highest misclassification error because of the 
large bias and large variance that is characteristic 
for a single decision tree. Though it is remarkable 
that the pruned tree model, bagging trees model 
and the boosting trees models have the same 
misclassification error whilst the specificity of 
boosting trees is higher than the other two. This 
conveys that the same misclassification error does 
not necessarily have the same sensitivity and 
specificity. This is because the misclassification error 
does not take the type of misprediction into account 
though it can be very important. The specificity of 
the decision tree models is very high, always above 
98% and for random forests even 100%. However, 
the sensitivity is 50% at its maximum for single tree 
and boosting trees. It lies at only 42% for pruned 
tree, bagging trees and even random forests, which 
scored good for specificity and misclassification 
error. This means that for random forests, our best 

Prediction 
model

Sensitivity Specificity Misclassification 
Error

Single Tree 0.50 0.98 0.0402

Pruned Tree 0.42 0.99 0.0357

Bagging Trees 0.42 0.99 0.0357

Random Forests 0.42 1.00 0.0312

Boosting Trees 0.50 0.99 0.0357

Table 3

Summary of the accuracy of decision tree models



© Acta Anæsthesiologica Belgica, 2021, 72, Supplement 1

 predIctIng akI after lIVer surgery 69

References

1. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates 
DW. Acute kidney injury, mortality, length of stay, and costs 
in hospitalized patients. Journal of the American Society of 
Nephrology : JASN. 2005;16(11):3365-70.

2. Kim CS, Oak CY, Kim HY, Kang YU, Choi JS, Bae EH, et 
al. Incidence, predictive factors, and clinical outcomes of 
acute kidney injury after gastric surgery for gastric cancer. 
PloS one. 2013;8(12):e82289.

3. Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara 
P, Efron PA, Moore FA, et al. Cost and Mortality Associated 
With Postoperative Acute Kidney Injury. Annals of surgery. 
2015;261(6):1207-14.

4.  Saadat-Gilani, K. Zarbock, A. Meersch, M. Perioperative 
Renoprotection: Clinical Implications. Anesthesia and 
analgesia 2020; 12(6): 1667-1678.

5. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, 
Morgera S, et al. Acute renal failure in critically ill patients: a 
multinational, multicenter study. JAMA. 2005;294(7):813-
8.

6. Lameire N, Van Biesen W, Vanholder R. The changing 
epidemiology of acute renal failure. Nature clinical practice 
Nephrology. 2006;2(7):364-77.

7. Gameiro J, Fonseca JA, Neves M, Jorge S, Lopes JA. Acute 
kidney injury in major abdominal surgery: incidence, risk 
factors, pathogenesis and outcomes. Annals of intensive 
care. 2018;8(1):22.

8. Thakar CV. Perioperative acute kidney injury. Advances in 
chronic kidney disease. 2013;20(1):67-75.

9. Kim M, Kiran RP, Li G. Acute kidney injury after 
hepatectomy can be reasonably predicted after 
surgery. Journal of hepato-biliary-pancreatic sciences. 
2019;26(4):144-53.

10. Armstrong T, Welsh FK, Wells J, Chandrakumaran K, John 
TG, Rees M. The impact of pre-operative serum creatinine 
on short-term outcomes after liver resection. HPB : the 
official journal of the International Hepato Pancreato 
Biliary Association. 2009;11(8):622-8.

11. Tomozawa A, Ishikawa S, Shiota N, Cholvisudhi P, Makita 
K. Perioperative risk factors for acute kidney injury after 
liver resection surgery: an historical cohort study. Canadian 
journal of anaesthesia. 2015;62(7):753-61.

12. Peres LA, Bredt LC, Cipriani RF. Acute renal injury 
after partial hepatectomy. World journal of hepatology. 
2016;8(21):891-901.

13. Cho E, Kim SC, Kim MG, Jo SK, Cho WY, Kim HK. 
The incidence and risk factors of acute kidney injury after 
hepatobiliary surgery: a prospective observational study. 
BMC nephrology. 2014;15:169.

14. Correa-Gallego C, Berman A, Denis SC, Langdon-Embry 
L, O’Connor D, Arslan-Carlon V, et al. Renal function 
after low central venous pressure-assisted liver resection: 
assessment of 2116 cases. HPB : the official journal of 
the International Hepato Pancreato Biliary Association. 
2015;17(3):258-64.

15. Kambakamba P, Slankamenac K, Tschuor C, Kron P, 
Wirsching A, Maurer K, et al. Epidural analgesia and 
perioperative kidney function after major liver resection. 
The British journal of surgery. 2015;102(7):805-12.

16. Bihorac A, Yavas S, Subbiah S, Hobson CE, Schold JD, 
Gabrielli A, et al. Long-term risk of mortality and acute 
kidney injury during hospitalization after major surgery. 
Annals of surgery. 2009;249(5):851-8.

more intraoperative predictors such as urine output, 
blood loss, blood transfusion and vein clamping 
can be taken into account as well as more patient 
characteristics. 

Because of the missing observations of 
urine output, only a part of the KDIGO criteria 
could be used to make the classification of AKI. 
The classification of AKI in this study was only 
binary so there was no further classification in 
the different stages of AKI. However, in recent 
studies, the KDIGO definition can be criticized 
(27). The perioperative period has shown to be a 
unique environment with its diagnostic challenges. 
Studies have shown that urine output frequently is 
decreased in the intraoperative and postoperative 
period because of the release of aldosterone and 
vasopressin from stress, hypovolemia and surgical 
considerations (27-29). Serum creatinine is also 
a diagnostic tool that is an inaccurate marker 
for glomerular filtration rate. From injury to the 
necessary diagnostic rise, serum creatinine has a 
temporal delay. It will only begin to rise after the 
glomerular filtration rate is decreased by 50% (30). 
To diagnose the early stages of AKI, novel biologic 
biomarkers have been the focus of ongoing research 
(24, 31, 32). In future prospective research, it would 
be interesting to use predicting tree models with 
panels of biomarkers to see if they can accurately 
predict kidney damage in an early stage. 

In conclusion, decision tree models can predict 
AKI after hepatobiliary surgery in this study though 
more research is needed with a prospective approach. 
The rise in serum creatinine immediately after 
surgery, compared with the preoperative value, stood 
out as the most important perioperative risk factor 
so obtaining the serum creatinine postoperatively is 
very important in the risk stratification of developing 
AKI. Of all the predictive models, random forests 
had the lowest misclassification rate and this model 
should be explored more often in future research 
trials. Supervised models such as decision trees 
can be an useful tool for clinicians in the future 
when large amounts of data need to be adequately 
processed and converted so they are suitable for 
daily clinical use. 
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