Pharmacological strategies to reduce perioperative anxiety in children – a narrative review

D. KNAEPS¹, P. VAN DE PUTTE², M. VAN DE VELDE¹

¹Department of Anesthesiology, UZ Leuven, Leuven, Belgium; ²Department of Anesthesiology, Imelda Ziekenhuis, Bonheiden, Belgium.

Corresponding author: D. Knaeps, Dienst Anesthesie UZ Leuven, Herestraat 49, 3000 Leuven. E-mail: dries.knaeps@ hotmail.com

Abstract /Summary

Preoperative anxiety is common among children, resulting in negative postoperative behavior and increased postoperative pain. This review focuses on the practical use, safety, and efficacy of pharmacological strategies to reduce perioperative anxiety in children. The PubMed® database was searched using MeSH terms: ((care, preoperative) AND (children) AND (anti-anxiety drugs); (medication, preanesthetic) AND (child, preschool). An in-dept assessment was performed after which 85 articles were retrieved. Benzodiazepines (midazolam, diazepam), zolpidem, melatonin, opioids (fentanyl, butorphanol), alpha-2-adrenergic receptor agonists (clonidine, dexmedetomidine), ketamine and antihistamines (hydroxyzine, promethazine) were reviewed. Their pharmacological properties, routes of administration, doses, efficacy and (dis)advantages are discussed in this review. Based upon the results of our review, some suggestions can be made. Oral midazolam, oral clonidine, intranasally dexmedetomidine and the combination of oral ketamine and midazolam are recommendable products. Some other products like oral diazepam, butorphanol, ketamine intranasal s-ketamine + midazolam and hydroxyzine can be considered because of their proper safety profile and benefits.

Further research should focus on patient selection for specific pharmacological and non-pharmacological interventions to achieve a tailored approach. Standardized assessment of anxiety, clinical significancy and feasibility should be included in the objectives of these studies.

Keywords: Medication, preanesthetic, care, perioperative, children.

Introduction

Anesthesiologists are confronted daily with children scheduled for diagnostic or surgical procedures requiring general anesthesia. For most children this results in high anxiety and often non-cooperative behavior. Perioperative anxiety associated with to negative postoperative behavior and an increase in postoperative pain¹. A lot of strategies to diminish periprocedural anxiety in children have been described. These include non-pharmacological methods (information and education, parental presence, distraction techniques) and pharmacological methods (under the form of premedication). This review focuses on the practical use, safety, and efficacy of pharmacological approaches.

Methods

Approval from the academic Ethics Committee was obtained on March 17th, 2021 (identifier: MP017638). The recommendations and checklist of the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) were followed to conduct this review². The PubMed[®] database was searched using following Medical Subject Headings terms (MeSH): ((care,

Written approval by ethics committee UZ/KU Leuven was obtained March 17th, 2021 Identifier: MP017638; Chair: Pascal Borry (Onderwijs-Begeleidings Commissie), Minne Casteels (Ethische Comissie UZ/KU Leuven); UZ Leuven, EC onderzoek, Herestraat 49, 3000 Leuven. This review will be submitted for and presented at BeSARPP Graduation Day, June 10th, 2023 (Best Master Work competition). preoperative) AND (children) AND (anti-anxiety drugs); (medication, preanesthetic) AND (child, preschool). The search was restricted to articles written in English, Dutch, French or German. Older articles - defined as published before January 1st, 2000 - were excluded by automation. Prospective and retrospective clinical trials on children, case series, meta-analysis, systematic reviews, or observational studies were selected for inclusion. Records were screened by reviewing titles and abstracts on the relevancy of its content. Due to practical and financial considerations, articles not freely available via institutional login, were excluded. Selected articles underwent full-text review and references were screened for further studies not identified by the initial search.

Results

A – identification of studies

One-thousand two-hundred ninety records (n=1290) were obtained in the PubMed[®] database. More than seventy percent of them (n=965) were excluded by automation. After screening by title and abstract, 78 articles were left for full text review, of which 9 were marked as not relevant. After searching by citation, 16 studies were added to our review. The final analysis included 85 references. (See Table I. PRISMA flow diagram).

Drugs include midazolam (n=49), clonidine (n=19), dexmedetomidine (n=18), ketamine (n=16), opioids (n=3), diazepam (n=4), zolpidem (n=1), melatonin (n=6) and antihistamines (n=3). Preoperative effect was studied in the most of these records (n=69), whereas others focused on the postoperative effects and emergence behavior (n=28).

B – drugs

(See Table II. - Summary of studies.)

B-1. Benzodiazepines

B-1.1 Midazolam

Midazolam, a short-acting benzodiazepine, is the most studied anxiolytic of the last twenty years. It is extensively used as premedication for children and can be found on the World Health Organization Model List of Essential Medicines for Children³. Midazolam is a GABAergic agent which suppresses consciousness by reducing corticothalamic integration⁴. This results in an altered mental state (sedation), anxiolysis and anterograde amnesia.

Oral administration

Midazolam can be administered in different ways. Oral administration is a very easy, non-invasive, and therefore most common way of premedication. Fruit-flavored syrup preparations are available in certain countries (brand name Versed[®] - midazolam hydrochloride 2mgml⁻¹). Doses as low as 0,25mgkg⁻¹ are effective for preoperative sedation and anxiolysis within 10 minutes⁵.

Commercially available formulations are expensive and not available throughout the world⁶. Oral preparations can also be generated from intravenous solutions. Due to its intrinsic bitterness, multiple additives have been studied. When solved in Syrpalta (a commercially available pharmaceutical vehicle syrup) - plasma levels of midazolam where higher than pre-made syrup preparations with better clinical outcomes⁷. The addition of sodium citrate may have the same effect. It improves drug compliance and produces a deeper level of sedation compared to addition of Pepsi[®] Cola, pomegranate

Table I. - PRISMA flow diagram.

Table II Summary of studies	. Publications marked in red	are mentioned more than once.
-----------------------------	------------------------------	-------------------------------

author	year	type of study	number of subjects	population	intervention	comparison interven- tion	outcome parameters	conclusion		
				Mida	azolam					
Kogan A, et al. ³⁰	2002	Double-blind, randomized trial	119	1,5-5 year(s) old, ASA I-II	Oral midazolm 0,5mgkg ⁻¹	Intranasal midazolam 0,3mgkg ⁻¹ ; Rectal midazolam 0,5mgkg ⁻¹ '; Sublingual mid- azolam 0,3mgkg ⁻¹	Efficacy, onset time, safety, acceptability to parents	All routes of adminis- tration are equal		
Lam C, et al. ³⁵	2005	Single-blind, retrospective randomized trial	23	2-9 year(s) old, ASA I	Intranasal midazolam 0,2mgkg ⁻¹	Intramuscular mid- azolam 0,2mgkg ⁻¹	Efficacy, sedation, anxiolysis	Favors in- tramuscular midazolam 0,2mgkg ⁻¹		
				Oral m	idazolam	1				
Buffett-Jerrott SE, et al. ⁵⁰	2003	Double-blind, randomized- controlled trial	40	4-6 year(s) old, under- going my- ringotomy	Oral midazol- am 0,5mgkg ⁻¹ + acetamino- phen 15mgkg ⁻¹	Oral acetaminophen 15mgkg ⁻¹	Memory, sedation, at- tention	Midazolam impairs memory, not only due to sedation/ inattention		
Coté CJ, et al. ⁵	2002	Double-blind, randomized trial	405	6 months – 16 year(s) old, ASA I-III	Commer- cially available oral mid- azolam syrup 0,25mgkg ¹	Commercially avail- able oral midazolam 0,50mgkg ⁻¹ ; Com- mercially available midazolam 1mgkg ⁻¹	Level of seda- tion, anxioly- sis, onset time	Favors 0,25mgkg ⁻¹ , little effect with higher doses		
Golden L, et al. ¹⁰²	2006	Single-blind, randomized trial	100	3-6 year(s) old, ASA I-II, un- dergoing elective ambulatory surgery	Giving toy 5 min prior to oral midazol- am 0,5mgkg ⁻¹ administration	Oral midazolam 0,5mgkg ⁻¹ adminis- tration	Anxiety prior to oral admin- istration of midazolam	Favors giv- ing a toy		
Masue T, et al. ²⁹	2003	Randomized trial	193	4 old – 2 year(s) old, congenital heart disease	Oral midazol- am 1,0mgkg ⁻¹ ; Oral midazol- am 1,5mgkg ⁻¹	Oral midazolam 0,5mgkg⁻¹	Level of seda- tion, safety	Favors oral midazolam 1,5mgkg ⁻¹		
Mehrdad S, et al. ²⁸	2011	Randomized- controlled trial	90	2-8 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹ ; Oral midazol- am 1mgkg ⁻¹	Oral placebo	Anxiolysis, parental sepa- ration, mask acceptance, preparation of intravenous line	Favors oral midazolam 1mgkg ⁻¹		
Sola C, et al.46	2017	Single-blind, randomized trial	135	2-12 year(s) old,	Handheld DVD-player; Oral midazol- am 0,4mgkg ⁻¹ + handheld DVD-player	Oral midazolam 0,4mgkg ⁻¹	Efficacy	All strategies are effective		
Zand F, et al. ¹⁷	2011	Single-blind, randomized trial	167	2-7 year(s) old, ASA I-II, un- dergoing outpatient surgery	Sevoflurane + oral midazol- am 0,5mgkg ⁻¹ ; Halothane + oral midazol- am 0,5mgkg ⁻¹	Sevoflurane + pa- rental presence (no premedication); Halothane + parental presence (no pre- medication)	Postoperative agitation	Equally ef- fective after inhaled sevoflurane, favors mid- azolam after inhaled halothane		
Additives to oral midazolam										
Brosius KK, et al. ⁷	2003	Double-blind, randomized trial	50	2-10 year(s) old, ASA I-II	Versed® syrup 0,5mgkg-1	Mixture of IV mid- azolam 0,5mgkg ⁻¹ + Syrpalta syrup	Level of seda- tion, plasma levels	Favors IV midazolam + Syrpalta syrup		

Isik B, et al. ^s	2008	Double-blind, randomized- controlled trial	75	2-8 year(s) old, ASA I, undergoing dental treat- ment, com- pliance was determined as 3-4 with the Frankl Behavior Scale.	Oral admin- istration of injectable midazolam + Pepsi Cola or + 10% Sodium citrate or + fresh pome- granate juice or + grapefruit juice	Oral administration of injectable mid- azolam	Tolerabil- ity, efficacy, safety	Favors IV midazolam + sodium citrate
Lammers CR, et al.º	2002	Double-blind, randomized- controlled trial	40	2-6 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹ + sodium citrate	Oral midazolam 0,5mgkg¹ + Hawai- ian fruit punch	Onset of seda- tion, anxioly- sis, parental separation, induction conditions	Favors oral midazolam 0,5mgkg ⁻¹ + sodium citrate due to shortening of sedation, but no dif- ference in other factors
Salman S, et al. ¹⁰	2018	Double-blind, randomized trial	150	3-16 year(s) old	Oral mid- azolam in chocolate- based tablet 0,5mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Tolerability, efficacy	Favors oral midazolam in chocolate- based tablet 0,5mgkg ⁻¹
				Oral midazo	lam-clonidine			
Almenrader N, et al. ²⁴	2007	Open-label, ran- domized trial	64	1-6 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral clonidine 4µgkg ⁻¹	Tolerabil- ity, efficacy, postoperative recovery, parental satis- faction	Favors oral clonidine
Fazi L, et al. ¹⁶	2001	Double-blind, randomized- controlled trial	134	4-12 year(s) old, under- going tonsil- lectomy	Oral placebo + oral midazol- am 0,5mgkg ⁻¹	Oral clonidine 4µgkg ⁻¹ + placebo	Preoperative behavior, postoperative recovery	No clinically important benefits
Mikawa K, et al. ⁷⁴	2002	Letter to the editor – report of clinical trial	175	2-11 year(s) old, under- going minor surgery	Oral midazol- am 0,5mgkg ⁻¹ ; Oral placebo	Oral clonidine 2µgkg ⁻¹ ; Oral clonidine 4µgkg ⁻¹	Sevoflurane- related agitation, discharge times	Favors oral clonidine
Zhang CMD, et al. ²⁰	2013	Meta-analysis (12 random- ized-controlled trials)	1214	0,5-10 year(s) old	0,2-0,5 mgkg ⁻¹ oral midazolam premedication; 0,75-3µkg ⁻¹ epidural/intra- venous cloni- dine intraop- eratively	Placebo	Sevoflurane- related emergence agitation	Favors both interventions
			C	ral midazolam	- dexmedetomidin	ie		
Özcengiz D, et al. ²¹	2011	Randomized- controlled trial	100	3-9 year(s) old, ASA I-II, un- dergoing esophageal dilatation	Oral midazol- am 0,5mgkg ⁻¹ ; Oral placebo	Oral melatonin 0,1mgkg-1; Oral dexmedetomidine 2,5µgkg ⁻¹	Postoperative agitation	Equally effective compared to placebo
Sathyamoorthy M, et al. ¹⁹	2019	Single-blind, randomized trial	75	>5 year(s) old, >20kg scheduled for dental procedures	Oral midazol- am 0,5mgkg ⁻¹	Intranasal dexme- detomidine 2µgkg ¹	Sedation, parental sepa- ration, mask acceptance, safety	Favors intranasal dexmedeto- midine

Yuen VM, et al. ⁴⁸	2008	Double-blind, randomized- controlled trial	96	2-12 year(s) old, ASA I-II, under- going minor surgery	Intranasal placebo + oral midazolam 0,5mgkg ⁻¹ + oral acet- aminophen 20mgkg ⁻¹	Intranasal dexme- detomidine 0,5µgkg ⁻¹ + oral acetaminophen 20mgkg ⁻¹ ; Intranasal dexmedetomidine 1µgkg ⁻¹ + oral acet- aminophen 20mgkg ⁻¹	Sedation, parental separation	Equally effective
				Oral midazo	lam - ketamine	•	·	
Darlong V, et al.47	2004	Single-blind, randomized trial	78	1-9 year(s) old, ASA I-II, un- dergoing ophthalmic surgery	Oral midazol- am 0,5mgkg ⁻¹	Oral ketamine 6mgkg ⁻ ¹ ; Oral ketamine 3mgkg ⁻¹ + oral mid- azolam 0,25mgkg ⁻¹	Efficacy, side effects, onset time, recovery profile	Favors combina- tion of oral ketamine with oral midazolam
Ghai B, et al.95	2004	Double-blind, randomized trial	100	10months - 6year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral midazolam 0,25mgkg ⁻¹ + ket- amine 2,5mgkg ⁻¹	Efficacy, safety, seda- tion, parental separation, mask accep- tance, recov- ery profile	Equally effective, but favors combina- tion of oral midazolam + ketamine
Horiuchi T, et al. ²⁵	2005	Single-blind, randomized trial	55	2-6year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Transmucosal (Lolli- pop) ketamine 50mg	Sedation, ef- ficacy	Favors oral midazolam
Trabold B, et al. ⁹⁶	2002	Double-blind, randomized trial	79	1-8 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg-1	Oral midazolam 0,5mgkg ⁻¹ + ketamine 1,8mgkg ⁻¹ , oral ket- amine 3mgkg ⁻¹	Emergence and recovery times	No differ- ence
			<u> </u>	Oral midaz	zolam - other			
Arai YCP, et al. ⁵⁶	2005	Single-blind, randomized- controlled trial	42	1-7 year(s) old, ASA I-II, un- dergoing adenotonsil- lectomy	Oral midazol- am 0,5mgkg ⁻¹ + diazepam 0,25mgkg ⁻¹ ; Oral midazol- am 0,5mgkg ⁻¹	No premedication	Pre-induction conditions, emergence condition	Favors combina- tion of oral midazolam + diazepam
Gitto E, et al. ⁵⁹	2016	Pilot study: double-blind, randomized trial	92	5-14 year(s) old, under- going elec- tive surgery	Oral midazol- am 0,5mgkg ⁻¹	Oral melatonin 0,5mgkg ⁻¹	Required infu- sion of propo- fol, sedation, emergence	Equally ef- fective
Hanna AH, et al. ¹⁴	2018	Non inferiority, randomized trial	86	2-9 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral zolpidem syrup (± 0,25mgkg ⁻¹)	Anxiolysis, mask accep- tance	Favors oral midazolam
Isik B, et al. ¹⁰³	2008	Single-blind, randomized- controlled trial	60	3-8 year(s) old, ASA I, undergoing dental treat- ment	Oral midazol- am 0,75mgkg ⁻¹	Oral melatonin 3mg; Oral melato- nin 0,5mgkg ⁻¹ ; Oral placebo	Sedation, safety	Favors mid- azolam
Kain Z, et al. ⁶⁴	2009	Double-blind, randomized trial	148	2-8 year(s) old, ASA I-II, under- going outpa- tient elective surgery	Oral midazol- am 0,5mgkg ⁻¹	Oral melatonin 0,05mgkg ⁻¹ ; Oral melatonin 0,2mgkg ⁻¹ ; Oral melatonin 0,4mgkg ⁻¹	Anxiolysis at induction	Favors mid- azolam
Kurdi M, et al.63	2016	Double-blind, randomized- controlled trial	100	5-15 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral placebo; Oral melatonin 0,5mgkg ⁻¹ ; Oral melatonin 0,75mgkg ⁻¹	Anxiolysis, cognitive and psychomotor functions	Favors oral melatonin 0,75mgkg ⁻¹
Martinez JL, et al. ⁶	2002	Double-blind, randomized trial	154	4 months - 18 year(s) old, under- going upper endoscopy	Oral midazol- am 0,5mgkg ⁻¹ + IV meperi- dine 2mgkg ⁻¹	Oral diazepam 0,3mgkg ⁻¹ + IV me- peridine 2mgkg ⁻¹	Efficacy, safety, cost	Equally effective, but lower cost with diaz- epam

Nadri S, et al. ¹⁸	2020	Double-blind, randomized- controlled trial	93	3-9 year(s) old, ASA I-II, un- dergoing ambulatory surgery	Oral midazol- am 0,5mgkg ⁻¹ ; Oral placebo	Oral promethazine 0,3mgkg ⁻¹	Sedation, anxiolysis	Equally effective, significant different to placebo
Singh V, et al. ²³	2005	Double-blind, randomized trial	60	2-10 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral butorphanol 0,2mgkg ⁻¹	Sedation, anx- iolysis, paren- tal separation, IV-puncture, postoperative pain	Favors oral butorphanol
Sinha C, et al. ⁶⁸	2012	Double-blind, randomized trial	60	2-12 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg¹	Oral butorphanol 0,2mgkg ⁻¹	Sedation, anx- iolysis, paren- tal separation, IV-puncture, mask accep- tance	Favors oral butorphanol (sedation), but midazol- am superior as anxiolytic during veni- puncture and mask appli- cation
Stewart B, et al. ^{si}	2019	Single-blind, randomized trial	102	4-12 year(s) old, ASA I-II, sched- uled for outpatient surgery	Oral midazol- am 0,3mgkg ⁻¹	Tablet-based inter- active distraction (TBID)	Anxiolysis, parental sepa- ration, mask acceptance	Favors TBID
				Intranasal	midazolam			
Akin A, et al. ³²	2012	Double-blind, randomized trial	90	2-9 year(s) old, ASA I, undergoing adenotonsil- lectomy	Intranasal midazolam 0,2mgkg ⁻¹	Intranasal dexme- detomidine 1µgkg ⁻¹	Anxiolysis, parental sepa- ration, mask acceptance	Favors intranasal midazolam
Baldwa NM, et al. ³³	2012	Single-blind, randomized trial	60	1-12 year(s) old, ASA I-II	Atomized intranasal midazolam 0,2mgkg ⁻¹	Atomized intranasal midazolam 0,3mgkg ⁻¹	Onset of seda- tion, parental separation, mask accep- tance	Favors intranasal midazolam 0,3mgkg ⁻¹
Weber F. et al. ³⁴	2003	Double-blind, randomized trial	90	6 months - 6 year(s) old, ASA I-II	Intranasal midazolam 0,2mgkg ⁻¹	Intranasal S-ketamine 1mgkg ¹ + midazolam 0,2mgkg ¹ ; Intranasal S-ketamine 2mgkg ¹ + midazolam 0,2mgkg ¹	Onset time, sedation, anxiolysis	Favors nasal administra- tion of s- ketamine + midazolam
				Buccal r	nidazolam			
Millar K, et al. ³⁹	2007	Double-blind, randomized- controlled trial	179	5-10 year(s) old, ASA I-II, dental extraction under gen- eral anes- thesia	Commercially available buc- cal midazolam 0,2mgkg ⁻¹	Buccal placebo	Postopera- tive cognitive function	Favors placebo
Millar K, et al.40	2009	Double-blind, randomized- controlled trial	181	5-10 year(s) old, ASA I-II, under- going dental extractions	Buccal midazolam 0,2mgkg ⁻¹	Buccal placebo	Dental anxiolysis, pre-induction conditions, postoperative psychological morbidity, subsequent attendance	No benefit

Sublingual midazolam										
Pant D, et al. ³⁸	2014	Double-blind, randomized trial	100	1-12 year(s) old, ASA I-II, un- dergoing outpatient urological surgery	Sublingual midazolam 0,25mgkg¹	Sublingual dexme- detomidine 1,5µgkg ¹	Efficacy, sedation, conditions at induction and awakening	Favors sublingual dexmedeto- midine		
		•	<u>.</u>	Nebulized	midazolam	• •	·			
Abdel-Ghaffar HS, et al. ³⁶	2018	Double-blind, randomized trial	90	3-7 year(s) old, ASA I-II, under- going bone marrow aspiration	Nebulized midazolam 0,2mgkg ⁻¹	Nebulized ketamine 2mgkg ¹ , nebulized dexmedetomidine 2µgkg ⁻¹ ,	Sedation, tolerability, anxiolysis, recovery time, postoperative agitation	Favors nebu- lized dexme- detomidine		
				Rectal n	nidazolam	1				
Bergendahl HTG, et al.42	2004	Double-blind, randomized trial	104	1-11 year(s) old, ASA I, undergoing adenoidecto- my or tonsil- lectomy	Rectal midazolam 0,3mgkg ⁻¹ + atropine 40µgkg ⁻¹	Rectal clonidine 5µgkg ¹ + atropine 40µgkg ¹	Sedation, postoperative pain, postop- erative vomit- ing, shivering, postoperative confusion	Favors rectal clonidine		
Constant I, et al.43	2004	Double-blind, randomized trial	40	2-10 year(s) old, ASA I, undergoing tonsillec- tomy	Rectal midazolam 0,4mgkg ⁻¹	Oral clonidine 4µgkg ⁻¹	Agitation during sevo- flurane induc- tion	Favors oral clonidine		
Marhofer P, et al.94	2001	Double-blind, randomized trial	62	Children, 3-20kg	Rectal midazolam 0,75mgkg ⁻¹	Rectal S(+)-ketamine 1,5mgkg ⁻¹ ; Rectal S(+)-ketamine 0,75mgkg ⁻¹ + 0,75mgkg ⁻¹ rectal midazolam	Efficacy, mask acceptance, side effects	Equally effective, no benefit of addition of rectal S(+)- ketamine		
Tanaka M, et al.45	2000	Single-blind, randomized trial	66	7-61 months old, ASA I, undergo- ing minor urological surgery	Rectal midazolam 1mgkg ⁻¹	Rectal ketamine 5mgkg ⁻¹ ; Rectal ketamine 7mgkg ⁻¹ ; Rectal ketamine 10mgkg ⁻¹	Sedation, analgesia, emergence	Favors rectal midazolam		
Wang X, et al. ⁹⁷	2010	Double-blind, randomized trial	67	2 months - 2year(s) old, undergoing surgery >60 minutes	Rectal midazolam 0,5mgkg ⁻¹ + ketamine 4mgkg ⁻¹ + atropine 0,02mgkg ⁻¹	Rectal midazolam 0,5mgkg ⁻¹ + ketamine 8mgkg ⁻¹ + atropine 0,02mgkg ⁻¹	Sedation, parental separation	Favors rectal ketamine 8mgkg ⁻¹ + midazolam 0,5mgkg ⁻¹ + atropine 0,02mgkg ⁻¹		
			Int	travenous/intran	nuscular midazola	Im				
Golparvar M, et al.49	2004	Double-blind, randomized- controlled trial	706 (24 with para- doxical reac- tion)	6 months - 6 year(s) old, ASA I-II	Intravenous (IV) midazol- am 0,1mgkg ⁻¹ extra after observation of paradoxi- cal reaction following IV midazolam 0,1mgkg ⁻¹ ; IV ketamine 0,5mgkg ⁻¹ after paradoxical reaction	Intravenous placebo after paradoxical reaction	Response af- ter paradoxi- cal reaction	Favors intravenous ketamine		

Verghese ST, et al. ⁵²	2003	Single-blind, randomized trial	80	1-3 year(s) old, ASA I-II, under- going bilat- eral myrin- gotomy and tube inser- tion (ambu- latory)	Intramuscular midazolam 0,1mgkg ⁻¹ + ketamine 2mgkg ⁻¹ ; Intramuscular midazolam 0,2mgkg ⁻¹ + ketamine 2mgkg ⁻¹ ; Intramuscular midazolam 0,2mgkg ⁻¹ + ketamine 1mgkg ⁻¹	Intramuscular ket- amine 2mgkg ⁻¹	Recovery, discharge	Not recom- mendable
				Dia	zepam			
Arai YCP, et al. ⁵⁶	2005	Single-blind, randomized- controlled trial	42	1-7 year(s) old, ASA I-II, un- dergoing adenotonsil- lectomy	Oral midazol- am 0,5mgkg ⁻¹ + diazepam 0,25mgkg ⁻¹ ; Oral midazol- am 0,5mgkg ⁻¹	No premedication	Pre-induction and emer- gence condi- tions	Favors combina- tion of oral midazolam and oral diazepam
Filatov SM, et al. ³⁷	2000	Double-blind, randomized- controlled trial	100	1,1-4,4 year(s) old, 10-15kg, ASA I, scheduled for adenoid- ectomy	EMLA-cream + rectal diclof- enac 12,5mg + rectal diaze- pam 0,5mgkg ⁻¹ + oral placebo + IV glycopyr- rolate 5µgkg ⁻¹ ; EMLA-cream + rectal diclof- enac 12,5mg + rectal diaze- pam 0,5mgkg ⁻¹ + oral placebo + IV placebo; Placebo cream + rectal pla- cebo + oral ketamine 6mgkg ⁻¹ + IV glycopyrrolate 5µgkg ⁻¹	Placebo cream + rectal placebo + oral ketamine 6mgkg ⁻¹ + Intravenous (IV) placebo	Efficacy, safety	Favors rectal diclofenac + rectal diaz- epam
Martinez JL, et al. ⁶	2002	Double-blind, randomized trial	154	4 months - 18 year(s) old, under- going upper endoscopy	Oral diazepam 0,3mgkg ⁻¹ + IV meperidine 2mgkg ⁻¹	Oral midazolam 0,5mgkg ¹ + IV me- peridine 2mgkg ¹	Efficacy, safety, cost	Equally effective, but lower cost with diaz- epam
Sakurai Y, et al. ⁵⁸	2010	Nonrandomized trial	40	1-7 year(s) old, ASA I	Rectal diaze- pam 0,7mgkg ⁻¹	Buccal dexmedetomi- dine 3-4µgkg ⁻¹	Sedation	Favors buc- cal dexme- detomidine
				Zolj	pidem			
Hanna AH, et al. ¹⁴	2018	Non inferiority, randomized trial	86	2-9 year(s) old, ASA I-II	Oral zolpi- dem syrup (± 0,25mgkg ¹)	Oral midazolam 0,5mgkg ⁻¹	Anxiolysis, mask accep- tance	Favors oral midazolam

				Mel	Melatonin									
Almenrader N, et al. ⁶⁰	2013	Double-blind, randomized trial	87	1-5 year(s) old, ASA I-II, under- going minor surgery	Oral melatonin 0,3mgkg ⁻¹	Oral clonidine 4µgkg⁻¹	Success of steal induc- tion, safety, postoperative pain	Clonidine more suc- cessful for steal induction, melatonin safer, cloni- dine better in reducing postopera- tive pain						
Gitto E, et al. ⁵⁹	2016	Pilot study: double-blind, randomized trial	92	5-14 year(s) old, under- going elec- tive surgery	Oral melatonin 0,5mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Required infu- sion of propo- fol, sedation, emergence	Equally effective						
Isik B, et al. ¹⁰³	2008	Single-blind, randomized- controlled trial	60	3-8 year(s) old, ASA I, undergoing dental treat- ment	Oral melatonin 3mg; Oral melatonin 0,5mgkg ⁻¹ ; Oral midazol- am 0,75mgkg ⁻¹	Oral placebo	Sedation, safety	No effect of oral melatonin compared to placebo, favors mid- azolam						
Kain Z, et al.44	2009	Double-blind, randomized trial	148	2-8 year(s) old, ASA I-II, under- going outpa- tient elective surgery	Oral melatonin 0,05mgkg ⁻¹ ; Oral melatonin 0,2mgkg ⁻¹ ; Oral melatonin 0,4mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Anxiolysis	Favors midazolam						
Kurdi M, et al.63	2016	Double-blind, randomized- controlled trial	100	5-15 year(s) old, ASA I-II	Oral melatonin 0,5mgkg ⁻¹ ; Oral melatonin 0,75mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹ ; Oral placebo	Anxiolysis, cognitive and psychomotor functions	Favors oral melatonin 0,75mgkg ⁻¹						
Özcengiz D, et al. ²¹	2011	Randomized- controlled trial	100	3-9 year(s) old, ASA I-II, un- dergoing esophageal dilatation	Oral melato- nin 0,1mgkg ⁻¹	Oral dexmedetomi- dine 2,5µgkg ⁻¹ ; Oral midazolam 0,5mgkg ⁻¹ ; Oral placebo	Postoperative agitation	Equally effective compared to placebo						
Sury MRJ, et al.62	2006	Double-blind, randomized- controlled trial	98	5-40kg, undergoing MRI	Oral mela- tonin 3mg (<15kg) or oral melatonin 6mg (>15kg) 10 minutes before routine sedation (chlo- ralhydrate/ temazepam)	Oral placebo 10 min- utes before routine sedation (chloralhy- drate/temazepam)	Sedation	No effect						
			Oral	transmucosal fe	entanyl citrate (OT	(FC)								
Binstock W, et al. ⁶⁶	2004	Double-blind, randomized- controlled trial	125	2-10 year(s) old, ASA I-II, un- dergoing ambulatory surgery	OTFC (oral transmucosal fentanyl ci- trate) 10µgkg ⁻¹ + IV ondanse- tron 0,1mgkg ⁻¹ ; OTFC 10- 15µgkg ⁻¹ + IV placebo	Oral placebo + IV on- dansetron 0,1mgkg ⁻¹ ; Oral placebo + IV placebo	Early postop- erative agita- tion, adverse events	OTFC showed decrease in postopera- tive agita- tion but has important side effects						

Butorphanol										
Singh V, et al. ²³	2005	Double-blind, randomized trial	60	2-10 year(s) old, ASA I-II	Oral butorpha- nol 0,2mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Sedation, anx- iolysis, paren- tal separation, IV-puncture, postoperative pain	Favors oral butorphanol		
Sinha C, et al.68	2012	Double-blind, randomized trial	60	2-12 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹	Oral butorphanol 0,2mgkgʻ	Sedation, anx- iolysis, paren- tal separation, IV-puncture, mask accep- tance	Favors oral butorphanol (sedation), but midazol- am superior as anxiolytic during veni- puncture and mask appli- cation		
				Clos	nidine					
Homma M, et al. ⁷⁶	2006	Study on phar- macokinetics	23	1-11 year(s) old, ASA I, undergoing adenoidecto- my or tonsil- lectomy	Oral clonidine disintegrating tablets 4µgkg ⁻¹	Clonidine lollipop 4µgkg-1	Sedation, plasma con- centration, safety	Favors orally disintegrat- ing tablets		
				Oral c	lonidine	•		·		
Gulhas N, et al. ⁷³	2003	Double-blind, randomized trial	80	3-12 year(s) old, ASA I, undergoing strabismus surgery	Oral clonidine 4µgkg ⁻¹	Oral placebo	Postoperative nausea and vomiting	Not effective		
Inomata S, et al. ⁷⁹	2000	Single-blind, randomized- controlled trial	90	2-8 year(s) old, ASA I, undergoing inguinal her- nia repair	Oral clonidine 2µgkg ⁻¹ ; Oral clonidine 4µgkg ⁻¹	Oral placebo	MACEI (en- dotracheal intubation), MAC (skin incision)	Reduction of MACEI and MAC in dose-depen- dent way		
Larsson P, et al. ⁷⁰	2011	Study on phar- macokinetics	8	3-10 year(s) old, ASA I, undergoing adenotonsil- lectomy	Oral clonidine 4µgkg ⁻¹	/	Pharmacoki- netics	Higher doses (per kg) necessary compared to adults		
Nader ND, et al. ⁸⁰	2001	Double-blind, randomized- controlled trial	18	Adults, undergo- ing lower extremity revascular- ization	Oral clonidine 0,2mg (in 2 doses), Oral clonidine 0,4mg (in 2 doses)	Oral placebo	Catechol- amine release (central and peripheral)	Decrease in catechol- amine re- lease		
Yaguchi Y, et al. ⁷¹	2002	Single-blind, randomized- controlled trial	60	2-9 year(s) old, ASA I, undergoing inguinal her- nia repair	Oral clonidine 4µgkg ⁻¹ ; Oral clonidine 2µgkg ⁻¹	Oral placebo	MAC-ex (endotracheal extubation), emergence time, airway related com- plications	Decrease in MAC-ex, no adverse effects		
				Oral clonidir	ne - midazolam	1				
Almenrader N, et al. ²⁴	2007	Open-label, ran- domized trial	64	1-6 year(s) old, ASA I-II	Oral clonidine 4µgkg ⁻¹	Oral midazolam 0,5mgkg ⁻ⁱ	Tolerabil- ity, efficacy, postoperative recovery, parental satis- faction	Favors oral clonidine		
Constant I, et al.43	2004	Double-blind, randomized trial	40	2-10 year(s) old, ASA I, undergoing tonsillec- tomy	Oral clonidine 4µgkg ⁻¹	Rectal midazolam 0,4mgkg ⁻¹	Agitation during sevoflurane induction	Favors oral clonidine		

Table II. — Summary of studies	Publications marked in red	l are mentioned more than once.
--------------------------------	----------------------------	---------------------------------

Fazi L, et al. ¹⁶	2001	Double-blind, randomized- controlled trial	134	4-12 year(s) old, under- going tonsil- lectomy	Oral clonidine 4µgkg ⁻¹ + placebo	Oral placebo + oral midazolam 0,5mgkg ⁻¹	Preoperative behavior, postoperative recovery	No clinically important benefits		
Mikawa K, et al. ⁷⁴	2002	Letter to the editor – report of clinical trial	175	2-11 year(s) old, under- going minor surgery	Oral clonidine 2μgkg ⁻¹ ; Oral clonidine 4μgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹ ; Oral placebo	Sevoflurane- related agitation, discharge times	Favors oral clonidine		
Oral clonidine - midazolam - dexmedetomidine										
Schmidt AP, et al. ²²	2007	Open-label, ran- domized trial	60	7-12 year(s) old, ASA I-II, ambula- tory proce- dures	Oral clonidine 4μgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹ , transmu- cosal dexmedetomi- dine 1µgkg ⁻¹	Postoperative anxiolysis, sedation, sympathetic stimulation, postoperative pain	Favors alpha- agonists		
				Oral clonidi	ne - melatonin	• •	<u>.</u>			
Almenrader N, et al. ⁶⁰	2013	Double-blind, randomized trial	87	1-5 year(s) old, ASA I-II, under- going minor surgery	Oral clonidine 4µgkg¹	Oral melatonin 0,3mgkg ⁻¹	Success of steal induc- tion, safety, postoperative pain	Clonidine more suc- cessful for steal induction, melatonin safer, cloni- dine better in reducing postopera- tive pain		
				Intranasa	ll clonidine					
Almenrader N, et al. ⁷⁷	2009	Study on phar- macokinetics	13	22-84 months old, ASA I, un- dergoing mi- nor urologic surgery	Intranasal clonidine 4µgkg ⁻¹ after induction	/	Pharmacoki- netics	Not recom- mendable		
Larsson P, et al. ⁷⁸	2012	Double-blind, randomized- controlled trial	60	6 months - 6 year(s) old, ASA I-II, undergo- ing minor ambulatory surgery	Intranasal clonidine 3-4µgkg ⁻¹ ; Intranasal clonidine 7-8µgkg ⁻¹	Intranasal placebo	Pre- and postoperative sedation	Inadequate preoperative sedation, no prolonging of post- operative sedation		
				Rectal	clonidine					
Bergendahl HTG, et al.42	2004	Double-blind, randomized trial	104	1-11 year(s) old, ASA I, undergoing adenoidecto- my or tonsil- lectomy	Rectal cloni- dine 5µgkg ⁻¹ + atropine 40µgkg ⁻¹	Rectal midazolam 0,3mgkg ⁻¹ + atropine 40µgkg ⁻¹	Sedation, postoperative pain, postop- erative vomit- ing, shivering, postoperative confusion	Favors rectal clonidine		
				Intraveno	us clonidine					
Kulka PJ, et al. ²⁶	2001	Double-blind, randomized- controlled trial	49	2-7 year(s) old, ASA I-II, under- going cir- cumcision	Intravenous clonidine 2µgkg ¹ intra- operative	Intravenous placebo intraoperative	Sevoflurane- related emergence agitation	Favors intravenous clonidine		
Larsson PG, et al. ⁷²	2015	Observational study (nonran- domized)	1507	0,02-18 year(s) old	IV clonidine 1-2μgkg ⁻¹ ; Oral clonidine 3-6μgkg ⁻¹	No premedication	Incidence of bradycardia	Low inci- dence of bradycardia		

Zhang CMD, et al. ²⁰	2013	Meta-analysis (12 random- ized-controlled trials)	1214	0,5-10 year(s) old	0,2-0,5 mgkg ⁻¹ oral midazolam premedication; 0,75-3µkg ⁻¹ epidural/intra- venous cloni- dine intraop- eratively	Placebo	Sevoflurane- related emergence agitation	Favors both interventions
				Transmuco	osal clonidine			
Sumiya K, et al. ⁷⁵	2003	Study on phar- macokinetics	16	1-11 year(s) old, ASA I	Clonidine lol- lipop 2 µgkg ⁻¹	Clonidine lollipop 4µgkg¹	Plasma con- centrations, sedation, safety	No signifi- cant dif- ference in plasma con- centrations, correlation between plasma con- centration and sedation, no adverse effects
				Dexmed	letomidine	1		
Anttila M, et al. ^{s7}	2003	Study on phar- macokinetics	12	20-27 year(s) old, healthy men	Buccal dex- medetomidine 2µgkg ⁻¹	IV dexmedetomidine 2µgkg ⁻¹ , IM dexme- detomidine 2µgkg ⁻¹ , oral dexmedetomi- dine 2µgkg ⁻¹ ,	Bioavail- ability	Buccal dex- medetomi- dine is well absorbed through oral mucosa
Cimen ZS, et al. ⁸³	2013	Double-blind, randomized trial	62	2-6 year(s) old, ASA I-II, under- going minor elective surgery	Oral dexme- detomidine 1µgkg ⁻¹	Intranasal dexme- detomidine 1µgkg ⁻¹	Onset of ac- tion, sedation	Favors intranasal dexmedeto- midine
Koo E, et al.ºº	2014	Animal in vivo study	20	Pregnant cynomolgus monkeys	Intramuscular ketamine 20mgkg ⁻¹ + 20-50mgkg ⁻¹ /h; IV dexmedeto- midine 3µgkg ⁻¹ /h; IV dexme- detomidine 30µgkg ⁻¹ + 30µgkg ⁻¹ /h	No anesthetic	Neuro-apop- tosis, cellular degeneration	No effect of dexme- detomidine on neuro- apoptosis or cellular degeneration
Sanders RD, et al. ⁸⁹	2010	In vitro study, In vivo animal study	/	In vitro mice neuro-corti- ces, in vivo: rat pups	Various doses of dexmedeto- midine	/	Cortical apop- tosis	Dexme- detomidine prevents cortical apoptosis in vitro and in vivo
Sun L, et al. ⁹¹	2014	Meta-analysis (15 random- ized-controlled trials)	661	1-10 year(s) old	Dexmedetomi- dine intraop- eratively	Placebo intraopera- tively	Sevoflurane- related emergence agitation	Decreased incidence of sevoflu- rane related emergence agitation
Zub D, et al. ⁸⁸	2005	Retrospective cohort study	13	4-14 year(s) old	Oral dexme- detomidine	1	Efficacy, complica- tion, parental satisfaction	Dexme- detomidine may be an effective oral premedica- tion

Intranasal dexmedetomidine										
Akin A, et al. ³²	2012	Double-blind, randomized trial	90	2-9 year(s) old, ASA I, undergoing adenotonsil- lectomy	Intranasal dex- medetomidine 1µgkg ⁻¹	Intranasal midazolam 0,2mgkg ⁻¹	Anxiolysis, parental sepa- ration, mask acceptance	Favors intranasal midazolam		
Jia JE, et al. ⁸⁶	2013	Single-blind, randomized trial	160	2-6 year(s) old, ASA I-II	Intranasal dexmedetomi- dine 1µgkg ⁻¹ + oral ketamine 3mgkg ⁻¹ ; Intranasal dexmedetomi- dine 1µgkg ⁻¹ + oral ketamine 5mgkg ⁻¹ ; Intranasal dexmedetomi- dine 2µgkg ⁻¹ + oral ketamine 3mgkg ⁻¹	Intranasal dexme- detomidine 2µgkg ¹ + oral ketamine 5mgkg ¹	Tolerability, onset time, se- dation, paren- tal separation, face mask ac- ceptance, IV cannulation, side-effects	Favors 2 µgkg ⁻¹ intranasal dexmedeto- midine + 3 mgkg ⁻¹ oral ketamine		
Lin YMD, et al. ⁸⁵	2016	Single-blind, randomized- controlled trial	98	1-8 year(s) old, 9-38kg, ASA I-II, undergo- ing cataract surgeries	Intranasal dexmedetomi- dine 1µgkg ⁻¹ ; Intranasal dexmedetomi- dine 2µgkg ⁻¹	Intranasal placebo	Face mask acceptance, emergence agitation, dis- charge time, complications	Favors dexmedeto- midine		
Sathyamoorthy M, et al. ¹⁹	2019	Single-blind, randomized trial	75	>5 year(s) old, >20kg scheduled for dental procedures	Intranasal dex- medetomidine 2µgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Sedation, parental separation, face mask acceptance, safety	Favors intranasal dexmedeto- midine		
⁸⁴ Yuen VM, et al.	2012	Double-blind, randomized trial	123	1-8 year(s) old, ASA I-II	Intranasal dex- medetomidine 1µgkg ⁻¹	Intranasal dexme- detomidine 2µgkg ⁻¹	Sedation, ad- verse effects	Favors intra- nasal dexme- detomidine 2µgkg ⁻¹		
Yuen VM, et al.48	2008	Double-blind, randomized- controlled trial	96	2-12 year(s) old, ASA I-II, under- going minor surgery	Intranasal dexmedetomi- dine 0,5µgkg ⁻¹ + oral acet- aminophen 20mgkg ⁻¹ ; Intranasal dex- medetomidine 1µgkg ⁻¹ + oral acetaminophen 20mgkg ⁻¹	Intranasal placebo + oral midazolam 0,5mgkg ⁻¹ + oral acet- aminophen 20mgkg ⁻¹	Sedation, parental sepa- ration, mask induction	Intranasal dexme- detomidine 1µgkg ⁻¹ was equally effective as oral midazolam 0,5mgkg ⁻¹		
Yuen VM, et al. ¹⁰⁴	2007	Double-blind, randomized- controlled trial (cross-over study)	18	18-36 year(s) old, ASA I	Intranasal dexmedetomi- dine 1µgkg ⁻¹ ; intranasal dex- medetomidine 1,5µgkg ⁻¹	Intranasal placebo	Efficacy, onset, toler- ability	Favors dexmedeto- midine		
Nebulized dexmedetomidine										
Abdel-Ghaffar HS, et al. ³⁶	2018	Double-blind, randomized trial	90	3-7 year(s) old, ASA I-II, under- going bone marrow aspiration	Nebulized dex- medetomidine 2µgkg ⁻¹	Nebulized ketamine 2mgkg ⁻¹ , nebulized midazolam 0,2mgkg ⁻¹	Sedation, tolerability, anxiolysis, recovery time, postoperative agitation	Favors nebu- lized dexme- detomidine		

Oral dexmedetomidine												
Özcengiz D, et al. ²¹	2011	Randomized- controlled trial	100	3-9 year(s) old, ASA I-II, un- dergoing esophageal dilatation	Oral dexme- detomidine 2,5µgkg ¹	Oral midazolam 0,5mgkg ⁻¹ ; Oral melatonin 0,1mgkg ⁻¹ ; Oral placebo	Postoperative agitation	Equally effective compared to placebo				
Transmucosal dexmedetomidine												
Schmidt AP, et al. ²²	2007	Open-label, ran- domized trial	60	7-12 year(s) old, ASA I-II, ambula- tory proce- dures	Transmucosal dexmedetomi- dine 1µgkg ¹	Oral clonidine 4µgkg¹ ; Oral midazolam 0,5mgkg¹	Postoperative anxiolysis, sedation, sympathetic stimulation, postoperative pain	Favors alpha-ago- nists				
Pant D, et al. ³⁸	2014	Double-blind, randomized trial	100	1-12 year(s) old, ASA I-II, un- dergoing outpatient urological surgery	Sublingual dexmedetomi- dine 1,5µgkg ⁻¹	Sublingual midazol- am 0,25mgkg ⁻¹	Efficacy, sedation, conditions at induction, awakening	Favors sublingual dexmedeto- midine				
Sakurai Y, et al. ⁵⁸	2010	Nonrandomized trial	40	1-7 year(s) old, ASA I	Buccal dex- medetomidine 3-4µgkg ¹	Rectal diazepam 0,7mgkg ⁻¹	Sedation	Favors buc- cal dexme- detomidine				
				Ket	amine							
Cheng C, et al. ⁹³	2021	Retrospective, nonrandomized trial	383	3-10 year(s) old, >12kg	Oral ketamine 10mgkg ⁻¹ ; Nebulized ketamine 3mgkg ⁻¹	Apple juice	Sedation, postoperative pain, safety, postoperative nausea and vomiting, ad- verse effects	Favors nebulized ketamine				
	<u> </u>	·		Oral k	etamine							
Darlong V, et al.47	2004	Single-blind, randomized trial	78	1-9 year(s) old, ASA I-II, un- dergoing ophthalmic surgery	Oral ketamine 6mgkg ⁻¹ ; Oral ketamine 3mgkg ⁻¹ + oral midazolam 0,25mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Efficacy, onset time, side- effects, recov- ery profile	Favors combina- tion of oral ketamine + midazolam				
Filatov SM, et al. ^{s7}	2000	Double-blind, randomized- controlled trial	100	1,1-4,4 year(s) old, 10-15kg, ASA I, scheduled for adenoid- ectomy	EMLA-cream + rectal diclof- enac 12,5mg + rectal diaze- pam 0,5mgkg ⁻¹ + oral placebo + IV glycopyr- rolate 5µgkg ⁻¹ ; EMLA-cream + rectal diclof- enac 12,5mg + rectal diaze- pam 0,5mgkg ⁻¹ + oral placebo + IV placebo; Placebo cream + rectal pla- cebo + oral ketamine 6mgkg ⁻¹ + IV glycopyrrolate 5µgkg ⁻¹	Placebo cream + rectal placebo + oral ketamine 6mgkg ⁻¹ + Intravenous (IV) placebo	Efficacy, safety	Favors rectal diclofenac + rectal diaz- epam				

Table II. — Summary of studie	. Publications marked in red	are mentioned more than once.
-------------------------------	------------------------------	-------------------------------

Ghai B, et al.95	2004	Double-blind, randomized trial	100	10months - 6year(s) old, ASA I-II	Oral midazol- am 0,25mgkg ⁻¹ + ketamine 2,5mgkg ⁻¹	Oral midazolam 0,5mgkg ⁻¹	Efficacy, safety, seda- tion	Favors combina- tion of oral ketamine + midazolam			
Jia JE, et al. ⁸⁶	2013	Single-blind, randomized trial	160	2-6 year(s) old, ASA I-II	Intranasal dexmedetomi- dine 1µgkg ⁻¹ + oral ketamine 3mgkg ⁻¹ ; Intranasal dexmedetomi- dine 1µgkg ⁻¹ + oral ketamine 5mgkg ⁻¹ ; Intranasal dexmedetomi- dine 2µgkg ⁻¹ + oral ketamine 3mgkg ⁻¹	Intranasal dexme- detomidine 2µgkg ⁻¹ + oral ketamine 5mgkg ⁻¹	Tolerability, onset time, se- dation, paren- tal separation, face mask ac- ceptance, IV cannulation, side-effects	Favors 2 µgkg ⁻¹ intranasal dexmedeto- midine and 3 mgkg ⁻¹ oral ketamine			
Kararmaz A, et al. ⁹²	2004	Double-blind, randomized- controlled trial	80	3-6 year(s) old, ASA I-II, un- dergoing adenotonsil- lectomy	Oral ketamine 6mgkg ⁻¹	Oral placebo	Emergence agitation after desflurane anesthesia, emergence	Favors oral ketamine 6mgkg ⁻¹			
Trabold B, et al. ⁹⁶	2002	Double-blind, randomized trial	79	1-8 year(s) old, ASA I-II	Oral midazol- am 0,5mgkg ⁻¹ + ketamine 1,8mgkg ⁻¹ , oral ketamine 3mgkg ⁻¹	Oral midazolam 0,5mgkg¹	Emergence and recovery times	No differ- ence			
Nebulized ketamine											
Abdel-Ghaffar HS, et al. ³⁶	2018	Double-blind, randomized trial	90	3-7 year(s) old, ASA I-II, under- going bone marrow aspiration	Nebulized ketamine 2mgkg ⁻¹	Nebulized dexme- detomidine 2µgkg ¹ , nebulized midazolam 0,2mgkg ¹	Sedation, tolerability, anxiolysis, recovery time, postoperative agitation	Favors nebu- lized dexme- detomidine			
			Ir	ntravenous/Intra	muscular ketamin	e					
Golparvar M, et al.49	2004	Double-blind, randomized- controlled trial	706 (24 with para- doxical reac- tion)	6 months - 6 year(s) old, ASA I-II	Intravenous (IV) midazol- am 0,1mgkg ⁻¹ extra after observation of paradoxi- cal reaction following IV midazolam 0,1mgkg ⁻¹ ; IV ketamine 0,5mgkg ⁻¹ after paradoxical reaction	Intravenous placebo after paradoxical reaction	Response af- ter paradoxi- cal reaction	Favors intravenous ketamine			
Koo E, et al.ºº	2014	Animal in vivo study	20	Pregnant cynomolgus monkeys	Intramuscular ketamine 20mgkg ⁻¹ + 20-50mgkg ⁻¹ /h; IV dexmedeto- midine 3µgkg ⁻¹ + 3µgkg ⁻¹ /h; IV dexme- detomidine 30µgkg ⁻¹ + 30µgkg ⁻¹ /h	No anesthetic	Neuro-apop- tosis, cellular degeneration	No infor- mation on effects of intramuscu- lar ketamine			

Verghese ST, et al. ⁵²	2003	Single-blind, randomized trial	80	1-3 year(s) old, ASA I-II, under- going bilat- eral myrin- gotomy and tube inser- tion (ambu- latory)	Intramuscular ketamine 2mgkg ⁻¹ + midazolam 0,1mgkg ⁻¹ ; Intramuscular ketamine 2mgkg ⁻¹ + midazolam 0,2mgkg ⁻¹ + midazolam 1mgkg ⁻¹ + midazolam 0,2mgkg ⁻¹	Intramuscular ket- amine 2mgkg ⁻¹	Recovery, discharge	Not recom- mendable
			,	Transmucosal/Ir	ntranasal ketamine	2		
Horiuchi T, et al. ²⁵	2005	Single-blind, randomized trial	55	2-6year(s) old, ASA I-II	Transmucosal (Lollipop) ket- amine 50mg	Oral midazolam 0,5mgkg ⁻¹	Sedation, ef- ficacy	Favors oral midazolam
Weber F. et al. ³⁴	2003	Double-blind, randomized trial	90	6 months - 6 year(s) old, ASA I-II	Intranasal S-ketamine 1mgkg ⁻¹ + midazolam 0,2mgkg ⁻¹ ; In- tranasal S-ket- amine 2mgkg ⁻¹ + midazolam 0,2mgkg ⁻¹	Intranasal midazolam 0,2mgkg ⁻¹	Onset time, sedation, anxiolysis	Favors nasal S-ketamine + midazolam
				Rectal	ketamine			
Marhofer P, et al. ²⁴	2001	Double-blind, randomized trial	62	Children, 3-20kg	Rectal S(+)- ketamine 1,5mgkg ⁻¹ ; Rectal S(+)- ketamine 0,75mgkg ⁻¹ + 0,75mgkg ⁻¹ rectal mid- azolam	Rectal midazolam 0,75mgkg⁻¹	Efficacy, mask acceptance, side effects	Equally effective, no benefit of addition of rectal S(+)- ketamine
Tanaka M, et al.45	2000	Single-blind, randomized trial	66	7-61 months old, ASA I, undergo- ing minor urological surgery	ths A Rectal ket- amine 5mgkg ⁻¹ ; Rectal ket- amine 7mgkg ⁻¹ Rectal midazolam al ketamine 10mgkg ⁻¹		Sedation, analgesia, emergence	Favors rectal midazolam
Wang X, et al. ⁹⁷	2010	Double-blind, randomized trial	67	2 months - 2year(s) old, undergoing surgery >60 minutes	Rectal ket- amine 4mgkg ⁻¹ + midazolam 0,5mgkg ⁻¹ + atropine 0,02mgkg ⁻¹	Rectal ketamine 8mgkg ⁻¹ + midazolam 0,5mgkg ⁻¹ +atropine 0,02mgkg ⁻¹	Sedation, parental separation	Favors rectal ketamine 8mgkg ⁻¹ + midazolam 0,5mgkg ⁻¹ + atropine 0,02mgkg ⁻¹
	1	1		Hydro	oxyzine	1		
Faytrouny M, et al. ¹⁰¹	2007	Single-blind, randomized trial	30	31-10 month(s) old, ASA I, uncoopera- tive children undergoing dental treat- ment	Oral hydroxy- zine 20mgkg ⁻¹ 24h before procedure + 3,7mkg ⁻¹ oral hydroxyzine 1 hour before operation	3,7mkg ⁻¹ oral hy- droxyzine 1 hour before procedure	Sedation	No benefit of adminis- tration 24h before pro- cedure

Table II. — Summary of studies. Publications marked in red are mentioned more than once.

Trifa M, et al. ¹⁰⁰	2010	Single-blind, randomized- controlled trial	100	1-9 year(s) old, ASA I-II, un- dergoing outpatient surgery	Oral hydroxy- zine 1mgkg ⁻¹	Placebo	Mask accep- tance	Favors hydroxyzine		
Promethazine										
Nadri S, et al. ¹⁸	2020	Double-blind, randomized- controlled trial	93	3-9 year(s) old, ASA I-II, un- dergoing ambulatory surgery	Oral midazol- am 0,5mgkg ⁻¹ ; Oral placebo	Oral promethazine 0,3mgkg ⁻¹	Sedation, anxiolysis	Equally effective, significant different to placebo		

juice, fresh grapefruit juice or placebo⁸. Despite this promising result, a double blinded controlled trial by Lammers et al. could only show a significant (p<0,05) decrease in onset time, but no statistical difference in anxiety at any moment⁹. A chocolatebased 0,5mgkg⁻¹ formulation improved tolerability while remaining as efficient and fast as the oral solution in the same dose¹⁰. Newer formulations like ADV6209 are oral solutions, based on gammacyclodextrin which reduces the bitterness of midazolam and enhances its solubility¹¹. This leads to rapid absorption of 77% of the midazolam dose 30 minutes after oral administration.

Oral doses ranging from 0,25mgkg⁻¹ to 1,5mgkg⁻¹ have been studied with different results in efficacy. This might be depending on age. Toddlers (1-3 years old) possibly require a higher dose (1mgkg⁻¹) whereas 0,75mgkg⁻¹ seems sufficient for >95% of children more than 3 years old^{5,12,13}. Most studies use 0,5mgkg⁻¹ as a 'golden standard'¹⁴⁻²⁶ and this is believed to be the most effective dose with least side effects²⁷.

Some authors endeavor higher doses of oral midazolam. A randomized controlled double-blind trial by Mehrdad et al. concluded that children premedicated with 1mgkg⁻¹ had a significant (p<0,01) lower level of anxiety and agitation²⁸. In a randomized trial among children with congenital heart disease, 1,5mgkg⁻¹ was more effective than lower doses (1mgkg⁻¹ or 0,5mgkg⁻¹). Only 4% of these children showed agitation compared to 14% and 26% respectively. This is translated into better safety since agitation in these children can result in an increased oxygen demand and anoxic spells²⁹.

Onset and duration after oral administration

The onset of sedation in oral midazolam is dose dependent. A lower dose results in a slower onset^{15,27}. First changes in mental and behavioral state are seen 10 to 30 minutes^{5,12,16,23,24,27} after oral administration. Peak sedative effects are seen within 20 to 32min^{15,24,27,29,30}. Theoretically, midazolam has

an elimination half-life of approximately 2,5h³¹.

Oral midazolam has a theoretical first pass effect, as it is metabolized in the liver. Other routes of administration in which this effect is bypassed include the intravenous, intramuscular, intranasal, rectal sublingual, and buccal route.

Intranasal administration

The most common intranasal dose ranges from 0,2 to 0,3mgkg-1^{13,15,30,32-35}. The latter dose (via atomized intranasal spray) leads to faster onset, better mask acceptance (33% vs 16,6%) and less anxiety or agitation (16,6% vs 46,6%) with a small number of complications³³. Intranasal administration of midazolam however causes an unpleasant burning sensation in the nasal cavity and is for that reason not always accepted by the child. In a comparative study, 77% of the children cried after given intranasal midazolam. This is substantially more compared to other routes of administration³⁰. In another trial, only 23,4% of the children had good acceptance of the intranasal form (drops via syringe) whereas 43,3% and 33,4% had rather fair or poor acceptance³⁵. For this reason, some authors suggest nebulized midazolam. An atomizer or mask nebulization increases comfort and theoretically maximizes surface area, enabling rapid absorption³⁶. Chiaretti et al. used intranasal lidocaine 10mg one minute prior to intranasal midazolam via atomizer device. This prevented any nasal discomfort or pain reported by parents³⁷.

Studies show a high heterogeneity regarding onset time. Some studies describe an onset after 10 to 20 minutes (intranasal drops via syringe as well as atomized spray)^{12,15,32,33}. Weber et al. described an improved condition for parental separation after only 5 minutes when 0,2mgkg-1 was administered intranasally (drops via syringe)³⁴. Compared to other methods of dispensing, intranasal midazolam resulted faster in an altered mental state (drowsy or asleep) and adequate sedation. It is not described whether this administration occurred via atomizing or intranasal drops³⁰.

Sublingual/buccal administration

Sublingual and buccal dosage of midazolam is comparable to the intranasal dose: 0,2-0,3mgkg^{-115,38-40}. Peak sedative effects are seen at 29.8±5.8min³⁰. Buccolam[®] (midazolam hydrochloride) is an approved oromucosal preparation for pediatric patients with acute, prolonged convulsive seizures. It has a rapid onset of action (<10min) due to its high lipophilicity⁴¹. No clinical studies were found on its use in preoperative sedation and whether this is substantially different from non-commercial preparations.

Rectal administration

Rectal administration of drugs is quite invasive and therefore no more accepted in some cultures. Dosages of rectal midazolam are very diverse among different study designs (0,3 to 1mgkg⁻¹)^{15,42-} ⁴⁵. Although 1mgkg⁻¹ is more effective, inadequate sedation still occurs frequently. Higher doses might also result in prolonged paradoxical agitation⁴⁴. One major disadvantage of rectal administration of any kind of premedication is its unreliable absorption due to spill and unknown venous resorption (upper rectal vein which drains into the hepatic portal system). This might be an explanation for its low reliability. Only one study mentioned the onset of action which was 33.7±3.4min³⁰. Rectal midazolam is often combined with rectal ketamine, as will be discussed later

Intramuscular administration

Although quite invasive, intramuscular midazolam 0,2mgkg⁻¹ is an option for preprocedural sedation. Compared to intranasal, intramuscular midazolam allowed for more reliable sedation in a pilot study³⁵.

Efficacy

Multiple reviews have described midazolam as an 'effective' strategy to relieve perioperative anxiety^{27,46}. Compared to placebo, oral midazolam significantly (p<0,05) reduced crying, stress during induction, improved mask acceptance and parental separation^{18,28}. Two studies reported satisfactory mask induction in 86% and 75% of children treated with oral midazolam 0,5mgkg^{-1 24,47}. Akin et al. reported this achievement in 82,2% of children premedicated with intranasal midazolam 0,2mgkg⁻¹³². Others report less patients with favorable conditions for induction: 63% (intranasal drops of midazolam 0,2mgkg⁻¹, sedation scores at induction)³⁴, 33,3% (intranasal atomized midazolam 0,3mgkg⁻¹, mask acceptance)³³, 18,8% (oral midazolam 0,5mgkg⁻¹, satisfactory sedation at induction) 48 to less than 12% (intranasal atomized midazolam 0,2mgkg-1, mask acceptance)³³. Higher doses of oral midazolam might have an additional effect: only 4% of infants and children who received 1,5mgkg⁻¹ oral midazolam showed preoperative agitation. This contrasts with 14% and 26% of those who received 1,0mgkg⁻¹ or 0,5mgkg⁻¹ respectively²⁹.

Advantages

Preoperative midazolam decreases propofol requirements, resulting in easier laryngeal mask insertion¹². In a meta-analysis, preoperative oral midazolam also significantly (p<0,05) reduced the incidence of emergence agitation compared to placebo (OR=0,45[95% CI, 0,29-0,70])²⁰.

Disadvantages

Sedation with midazolam may produce some other minor side effects: loss of balance and head control, blurred visions⁴ and hiccups after rectal administration¹⁵. These are nonspecific and relative harmless. Paradoxical reactions like restlessness, violent behavior and need for restraints have been described. After intravenous midazolam premedication, these reactions occur in about 3,4% [95% CI, 2–4.7%] of cases⁴⁹. They take place after an initial sedation of a few minutes, and some suggest that they are rather temperamental behavior from impulsive children than a reflection of anxiety at all. This would imply that anxiolytic treatment has no place in these children²⁷. Long term postoperative maladaptive behavior after midazolam administration have been investigated but remains unproven^{12,27,38,44}. Midazolam impairs children's explicit memory and cognitive function on a short term (48h)^{39,50}. The long-term effects are not yet clear but might affect a child's well-being after day-care procedure. Retrograde amnesia can be beneficial for some. However without memory of preceding inductions, subsequent experiences might seem 'new' and more distressful27.

The effect on emergence delay and discharge is debatable^{12,15}. Increasing the dose of oral midazolam from 0,5mgkg⁻¹ to 0,75mgkg⁻¹, might result in delayed emergence⁴. Compared to nonpharmacological interventions (distraction or hypnosis), midazolam leads to a considerable delay in recovery time, but not in discharge^{27,51} Adding 0,1mgkg⁻¹ or 0,2mgkg⁻¹ intramuscular midazolam to intramuscular ketamine, significantly delayed recovery and discharge (p=0,001 and p=0,007 respectively)⁵². In this research, no studies observed delayed discharge in children premedicated with oral midazolam.

The variable bioavailability of midazolam, especially when administered orally, apparently results more in inadequate sedation than serious adverse events. In a study comparing three different doses of oral midazolam, 4% of the cases who received 1,5mgkg⁻¹ oral midazolam, showed upper airway complications²⁹. In a comparative study of oral premedication with midazolam and clonidine, postoperative desaturation (SpO₂ < 95%) occurred more frequently in the midazolam group after tonsillectomy¹⁶. Some authors suggest that this might be a result of the decrease of the upper airway tone. Nonetheless, limited research suggests that midazolam premedication was not associated with higher incidence of complications in children with obstructive sleep apnea or Down syndrome⁵³⁻⁵⁵.

B-1.2 Diazepam

Diazepam is another benzodiazepine with twice the potency of midazolam as an anxiolytic in children⁵⁶. It can be administrated orally and rectally in doses of 0,3mgkg⁻¹ or 0,5-0,75mgkg⁻¹ respectively^{6,57}. The onset of sedation after oral administration is about 30 to 60 minutes. Oral diazepam 0,25mgkg⁻¹ can be combined with midazolam 0,25mgkg⁻¹. This combination does provide a more adequate preinduction condition and more tranquil emergence compared to placebo and midazolam 0,5mgkg⁻¹ alone⁵⁶. This prolonged postoperative effect is probably caused by the longer half-life of diazepam (more than 20 hours) compared to midazolam. This can lead to a hangover-effect in some children, with more postoperative sleeping and excessive sedation 56. In one study, rectal administration of 0,5mgkg⁻¹ diazepam combined with rectal diclofenac 20 minutes before induction provided calm parental separation and good preoperative sedation⁵⁷. This is contrary to another trial in which rectal administration of diazepam 0,7mgkg⁻¹ did not provide adequate induction conditions 60 minutes later⁵⁸. As discussed earlier, rectal administration of any drug might be associated with unreliable absorption.

B-2 Zolpidem

Zolpidem is a more selective GABA-A-receptor agonist. It has a relative short acting time of 6 to 8 hours. This product is only available in tablets for adults, but it is water-soluble. One non-inferiority trial in this database compared the effectiveness of zolpidem and midazolam. Oral zolpidem 0,25mgkg⁻¹ was administered 30 minutes before parental separation. This study did not find any significant difference between oral zolpidem and midazolam regarding anxiety scores or postoperative behavior. Mask-acceptance scores were significantly (p=0,03) worse in the zolpidem-group. Five participants in the zolpidem group (n=42) showed minor adverse reactions: double vision, visual hallucinations, dysphoria, involuntary tongue movements and excessive sleepiness¹⁴.

B-3 Melatonin

Melatonin is a neurohormone involved in sleepwake cycle and circadian rhythm. Synthetically produced melatonin has sedative effects, with relative low evidence for use in sleep disorders⁵⁹. In children it is effective for idiopathic chronic sleep-onset insomnia⁶⁰. It is a relative short-acting drug with an elimination half-life of about 45 minutes⁶¹. Melatonine can be given orally, which is well tolerated by children⁶². As premedication, investigated doses vary from 0,05mgkg⁻¹ to 0,75mgkg⁻¹. Sedation starts after an average 35 minutes (15-60 minutes)⁶⁰.

Efficacy

The efficacy of melatonin is debatable. Depending on the primary outcome, studies showed different results. In a study of oral melatonin 0,5mgkg⁻¹, it was found to be as effective in anxiolysis as oral midazolam 0,5mgkg^{-1 59}. Doses up to 0,5mgkg⁻¹ or even 0,75mgkg⁻¹ in children aged 5 to 15 years old, showed effective anxiolysis, but did not produce sedation⁶³. Other authors conclude that melatonin improved sleepiness, but not sedation, or that the efficacy was not statistically significant compared to placebo^{8,62}. In a trial that compared three different doses of melatonin (0,05mgkg⁻¹, 0,2mgkg⁻¹ and 0,4mgkg⁻¹) to oral midazolam (0,5mgkg⁻¹) Kain et al. concluded that melatonin in any dose did not reduce anxiety at induction, whereas midazolam did64. A substantial difference between oral melatonin, dexmedetomidine 2,5µgkg⁻¹ or midazolam 0,5mgkg⁻¹ has not been demonstrated²¹.

Advantages

Melatonin is effective in 75% of children for steal induction in a dose of 0,3mgkg⁻¹⁶⁰. Steal induction is a technique where the premedicated child is asleep when arriving at the operating theatre. The child is not touched or disturbed. Inhalational induction is than accomplished by holding the mask near the child's face. Subgroup analysis of the 25% participants in which this failed, showed that failure was more frequent in early morning⁶⁰. So, the authors concluded that there might be a diurnal effect of melatonin. Melatonin shows a doseresponse effect on emergence agitation⁶⁴. In contrast with midazolam, melatonin showed no derangement of psychomotor or cognitive function^{63,65}.

B-4 Opioids

B-4.1 Fentanyl

Opioids are used widely used in the perioperative setting for quick and adequate pain relief. Fentanyl is a highly lipid soluble synthetic opioid. Therefore, it has a rapid onset of action when administered transmucosal. Oral transmucosal fentanyl citrate (OTFC) was the first sedating drug approved by the Food and Drug Administration (FDA) for the use in children. Most of the studies on intranasal opioids as a premedication were published more than twenty years ago and are – for this reason – excluded from this review.

OTFC can be prepared in a candy-based matrix in the form of a lollypop or lozenge and given preoperatively. A single oral administration of 10-15µgkg⁻¹ results in sedation 30 to 45 min after consumption¹⁵. Although OTFC has a sedative effect, it does not lead to anxiolysis or improved cooperation^{15,66}. OTFC reduces postoperative opioid requirements and significantly (p<0,05) reduces immediate postoperative agitation⁶⁶. This effect is also observed when intranasal fentanyl is administered intraoperatively¹². OTFC is associated with a significant (p<0,05) increase in preoperative and a postoperative nausea and vomiting. Sedation is often accompanied by dose-related facial pruritus^{15,66}. Opioids, including OTFC lead to respiratory depression and increase the risk of intraand postoperative respiratory events^{12,66}. Misuse of fentanyl lollipops have been reported and need awareness, given the current opioid crisis⁶⁷.

B-4.2 Butorphanol

Butorphanol is a synthetic opioid, which possesses partial agonist and antagonist activity at the μ -receptor. This leads to less hypoventilation, compared to other opioids. Only two small trials (2x n=60) studied the effect of oral butorphanol, where 0,2mgkg⁻¹ was administered 20 minutes before parental separation or 30 minutes before induction. Compared to oral midazolam 0,5mgkg⁻¹, it led to better sedation at induction in both studies. One study found more amnesia and less recall of venipuncture 25 minutes after administration²³, while Sinha et al. stated that midazolam proved to be a better anxiolytic during face mask application and venipuncture⁶⁸. Children in the butorphanol group required less rescue analgesia intra- and postoperatively, cried less, and showed no serious adverse events²³. The pharmacodynamic effects of butorphanol premedication on other intra-operative opioids has not been noted.

B-5 Alpha-2-adrenergic receptor agonists

B-5.1 Clonidine

Clonidine is an alpha-2-adrenergic receptor agonist. It antagonizes the effects of norepinephrine in the brainstem's locus coeruleus. This produces a sedative and anxiolytic effect. Influencing the descending tracts of the spinal cord, the product has an additional analgetic effect⁶⁹. Clonidine can be administered orally, intranasally, rectally, or intravenously.

Oral administration

Dosage of oral administration differs among studies, but most frequently 4µgkg⁻¹ ^{4,16,22, 24,43,60,69-74} is used. Bioavailability of oral clonidine is approximately 55%. This implies that oral doses are double of the intravenous dose 70. No studies regarding clinical dose-response on anxiety were found. Bergendahl et al. mentioned an older study that reported a benefit of 4µgkg⁻¹ oral clonidine over 2µgkg⁻¹ oral clonidine regarding parental separation, mask acceptance and sedation⁴⁴. Clonidine is tasteless and odorless and leads to less refusal to take the drug compared to midazolam²⁴. To improve tolerance, clonidine lollipops 2-4µgkg⁻¹ and orally disintegrating tablets have been made^{75,76}. Lollipops can be used for preoperative sedation in patients aged 4 to 11 years old. Younger children might not take the lollipop completely, resulting in inadequate plasma concentrations and less sedation⁷⁵. Orally disintegrating tablets (clonidine in a fixed dose of $40\mu g$ or $60\mu g$) may be of benefit in these younger patients. With less variety of plasma concentrations, these tablets led to better sedation than lollipops without an increase in adverse events76. Onset of sedation after oral clonidine is around 38 minutes, while it reaches its peak sedative effect around 46 minutes, 1 hour or even 105-120 minutes^{24,70,75}. This correlates with maximum concentration in blood samples taken 1 hour or 90-120 minutes after oral administration70,75.

Rectal administration

Rectal administration of clonidine results in a higher bioavailability. One trial compared rectal clonidine $5\mu gkg^{-1}$ to rectal midazolam $0,3mgkg^{-142}$. Both were combined with rectal atropine $40\mu gkg^{-1}$. This addition is recommended due to cases of severe bradycardia in the past⁴⁴. Rectal clonidine leads to significant (p<0,05) better pain relief and prolonged calmness during 24 postoperative hours, compared to midazolam⁴². Peak plasma concentration after rectal administration is reached after 50 minutes¹⁵.

Efficacy

The efficacy of clonidine premedication varies among studies. Most trials compare oral clonidine to oral midazolam. Although none of these trials could prove a significant better mask acceptance, level of sedation and higher parental satisfaction were significantly (p<0,05) better after oral clonidine²⁴. When children are adequately sedated, a steal induction could be performed in about 66% to 88,4% after oral clonidine^{24,60}. Another trial among 4-12 years old children (n=134), was not able to prove a benefit of oral clonidine over oral midazolam as it caused a more intense anxiety on parental separation and mask appliance¹⁶. Clonidine, dexmedetomidine and midazolam reduce postoperative anxiety levels equally²².

Advantages

Clonidine premedication improves speed of induction since it lowers anesthetic requirements. Minimum Alveolar Concentration (MAC-ex) of sevoflurane to reach clinically adequate anesthetic dept, is significantly (p<0,05) less $(1,9\% \pm 0,1 \text{ vs } 2,9\% \pm$ 0,1) after clonidine $(4\mu g k g^{-1})$ premedication^{71,79}. This reduction is dose-dependently and shortens the time for emergence with 1,5 minutes compared to oral midazolam $(p < 0.05)^{16}$. However, a study in ambulatory pediatric surgery failed to support this result but preoperative administration of alpha-2 agonists resulted in lower postoperative pain scores and are therefore favorable²². This is supported by other authors^{42,44,80}. Intravenous clonidine intraoperative is known to decrease postoperative sevoflurane-induced agitation²⁶, which might as well be the case with oral clonidine premedication⁶⁹. A trend towards better or at least similar recovery compared to benzodiazepines is seen, without prolonging discharge times^{16,24}. Children pretreated with oral clonidine, show less psychomotor impairments, less need for oxygen supplementation and fewer paradoxical reactions^{12,16}. Its effects on postoperative nausea and vomiting are a topic of debate. Early studies found a meaningful reduction in postoperative vomiting after oral premedication with clonidine^{81,82} but this could not be reproduced^{16,26,42,73}.

Disadvantages

In a study on the incidence of bradycardia after clonidine, oral doses up to 6µgkg⁻¹ were used. This resulted in a low incidence of significant (lower than 85% of lower limit of the normal range –reference values from Fleming et al.) decrease in heart rate compared to controls but did not result in any life-threatening bradycardia⁷². The elimination half-life of clonidine is long: 12-16 hours after oral administration³¹. Clonidine is considered a safe product, without major side-effects.

B-5.2 Dexmedetomidine

Dexmedetomidine is an alpha-2-receptor agonist which specificity (for alpha-2 over alpha⁻¹ receptors) is eightfold greater than clonidine¹². Its sedation state is similar to that of natural non-REM-sleep⁴. Its higher specificity leads to less side effects. Compared to clonidine, dexmedetomidine has a shorter elimination half-life (2-5 hours)³¹.

Intranasal administration

Dexmedetomidine can be administered intranasally, which is the most common, noninvasive way. It is a colorless and odorless substance. Most commonly, doses of 1µgkg⁻¹ (drops via syringe)^{12,32,83} or 2µgkg⁻¹ (atomizer/nebulization)^{19,36} are used for intranasal administration. The lowest dose assessed in this review was 0,5µgkg⁻¹. But compared to 1µgkg⁻¹ dexmedetomidine (both administered via intranasal drops), children were more easily aroused with external stimulation^{48,84}. Doubling the dose of intranasal dexmedetomidine from 1µgkg⁻¹ (diluted drops) to 2µgkg⁻¹ (undiluted drops) resulted in more satisfactory sedation in older children (aged 5-8years old) but not in those aged 4 years or less⁸⁴. A possible explanation for this non-intuitive finding, might be the smaller intranasal surface area of younger children, which limits drug absorption⁸⁴. Another trial that did not distinguish between age groups, did not find a significant difference in efficacy between these two doses⁸⁵. Although intranasal administration can occur via drops in a syringe, using an atomizer device might theoretically improve effectiveness as this maximizes surface area, enabling rapid drug absorption³⁶. No studies comparing this nebulized administration and classic intranasal drops were found. Some authors advocate the use of undiluted 100µgmL⁻¹ intranasal drops since over-dilution leads to partial oral administration¹⁹. Onset of sedation is comparable between different doses of intranasal drops of dexmedetomidine and is about 20 to 30 minutes^{84,85}. Its peak sedative effect is after 90 to 105 minutes³². This is a long interval, but adequate sedation is already achieved after 45 minutes to 1 hour^{32,48,83,84}. When combined with oral ketamine, onset time is shorter: 15-20 minutes. This combination might be a more practical way for adequate and quick sedation or anxiolysis⁸⁶.

Oral administration

Like clonidine, dexmedetomidine can also be administered orally. Its bioavailability is very low $(16\%)^{87}$. Zub et al. suggest oral doses of $3-4\mu$ gkg⁻¹, which provides adequate sedation after 20 to 30 minutes⁸⁸. Other authors suggest 2μ gkg⁻¹, resulting in an onset time of 45 to 90 minutes¹³.

Transmucosal administration

Due to its poor bioavailability, buccal administration of dexmedetomidine provides a more reliable blood concentration⁸⁷. However, this route requires more patient cooperation because children must hold the drug for 5 minutes in their mouth without swallowing⁸⁸. Compared to the intranasal way, buccal administration of 1μ gkg⁻¹ dexmedetomidine is slower and less effective⁸³. Sublingual administration of dexmedetomidine 1,5 μ gkg⁻¹ led to more effective sedation after 55 minutes compared to sublingual midazolam³⁸.

Efficacy

The efficacy of dexmedetomidine is indisputable. In a single-blinded, randomized, placebocontrolled clinical comparison study, intranasal drops of dexmedetomidine 1µgkg⁻¹ and 2µgkg⁻¹ significantly (p<0,001) reduced anxious behavior at mask induction⁸⁵. Intranasal administration dexmedetomidine 1µgkg⁻¹ (either via atomization of intranasal drops) led to good or excellent mask induction in approximately 80% of children^{19,83}. Intranasal or transmucosal dexmedetomidine is considered equally^{19,22,48} or more^{12,48} effective in preoperative sedation and relief of perioperative anxiety than oral midazolam. Additionally, when both agents are administered sublingually or nebulized, dexmedetomidine 2µgkg⁻¹ seems to be superior to midazolam 0,2mgkg⁻¹ regarding sedation, recovery time and postoperative agitation^{36,38}. Only one trial found an advantage of midazolam over intranasal drops of dexmedetomidine regarding behavior at mask induction, while they were equally effective in decreasing anxiety at parental separation³².

Advantages

As with clonidine, alpha-2 agonist may decrease intraoperative requirements for inhaled anesthetics and opioids, although a study of Schmidt et al. failed to prove this in ambulatory pediatric anesthesia²². Dexmedetomidine might be neuroprotective as well. In an experiment among rodents and fetal monkeys, it prevented cortical apoptosis^{89,90}. Unlike midazolam, dexmedetomidine does not impair explicit memory. A meta-analysis of 15 randomized controlled trials concluded that dexmedetomidine significantly reduced (pooled RR= 0,351 [95%CI: 0,275-0,449]) the incidence of sevoflurane-related emergence agitation⁹¹. This is possible without prolonging discharge times 85. One trial even noticed shorter recovery times compared to midazolam or ketamine³⁶. Factors in this improved postoperative flow might be less postoperative pain 22 and nausea and vomiting⁸⁶. Dexmedetomidine might be especially useful in older and larger combative patients, as it holds a substantial benefit over midazolam¹⁹.

Disadvantages

Dexmedetomidine leads to a reduction in heart rate and mean arterial pressure before and during surgery^{4,22,32,38,48,85}. Nonetheless, no record revealed clinically significant hemodynamic fluctuations that required an intervention.

B-6 Racemic ketamine

Ketamine is a water-soluble arylcycloalkylamine known for its sedative, dissociative effects. It also produces amnesia and analgesia, depending on the dose. Ketamine antagonizes the NMDAreceptor, resulting in a potent anesthetic effect. For that reason, it is included in the World Health Organization list of Essential Medicines for Children³. Ketamine can be administered orally, transmucosal, intranasally, rectally and intramuscular and has an elimination half-life of 1-2 hours in children³¹.

Oral administration

Oral preparations of doses ranging from 3mgkg⁻¹ to 10mgkg⁻¹ are administered. Some articles advocate small doses of 3mgkg⁻¹ since side effects are dose dependent¹⁵ but most commonly, 5mgkg⁻¹ to 6mgkg⁻¹ is used^{12,47,57,92}. One trial used 10mgkg⁻¹ oral racemic ketamine. Surprisingly, compared to placebo this did not improve sedation ⁹³.

Transmucosal/intranasal administration

Transmucosal administration in the form of a lollipop containing a fixed dose of racemic ketamine has been tested, but this resulted in calmness in only 26% of participants²⁵. Racemic ketamine can be administered intranasally in a dose of 3 to 5mgkg⁻¹ ¹⁵. To improve uptake by expanding the area, a nebulized form can be used. Based on limited research, doses of 2 or 3mgkg⁻¹ are acceptable. Nebulizing might induce nose irritation but leads to better sedation and less perioperative opioid requirements than oral ketamine⁹³.

Rectal administration

In a comparative study between 5mgkg⁻¹, 7mgkg⁻¹, 10mgkg⁻¹ rectal racemic ketamine and 1mgkg⁻¹ rectal midazolam, dose-related sedation was noted. As 75% of participants in the ketamine 5mgkg⁻¹ group required restraints to achieve induction versus none in the 10mgkg⁻¹ group, 5mgkg⁻¹ is not an appropriate dose. Rectal racemic ketamine 7mgkg⁻¹ and 10mgkg⁻¹ prolongs postoperative discharge but decreases the need for rescue analgesics⁴⁵.

Intramuscular administration

Intramuscular administration is an invasive method but sometimes the only solution in very combative children. Doses ranging from 2 to 5mgkg⁻¹ are used^{12,13,15,52}. This results in an onset time of 5 to 10 minutes^{12,13}.

S-Ketamine

In all the previous studies, racemic ketamine was used. The S-enantiomer of ketamine might have less disadvantages: less psychomimetic effects and less salivation. It is more potent and thus requires a lower dose. Marhofer et al. studied the effects of rectal S-ketamine (to a dose of 1,5mgkg⁻¹) but did not find any advantage over 0,75mgkg⁻¹ rectal midazolam. S-ketamine causes prolonged excitation during induction, which might be problematic⁹⁴.

Ketamine plus midazolam

Ketamine is frequently mixed with midazolam, to attenuate side effects of both drugs. Ketamine can be half dosed this way. For oral administration this would mean: 1,8mgkg⁻¹ to 3mgkg⁻¹ racemic ketamine plus 0,25mgkg⁻¹ to 0,3mgkg⁻¹ midazolam^{12,47,95,96}. This combination results in less sedation, but more awake, calm, and quiet children preoperatively⁹⁵. Moreover, this results in a faster onset (approximately 20 minutes vs 30 minutes with ketamine 6mgkg⁻¹ alone), minimal side effects and a more rapid recovery⁴⁷. Wang et al. used the combination of rectal racemic ketamine and midazolam but did not half the dose of ketamine (8mgkg⁻¹ vs 4mgkg⁻¹). This resulted in more children being unconscious in the high dose group, although most patients were calm during parental separation in both groups⁹⁷. No adverse effects were seen as atropine 0,02mgkg⁻¹ was used systematically. Nasal administration of drops of S-ketamine 2mgkg-1 plus midazolam 0,2mgkg-1 shows a very rapid onset of action (2,5 min) and a significantly (p<0,0001) better sedation compared to drops of midazolam alone³⁴. One side effect was noted in this study: all patients complained of its bitter taste immediately after drug administration³⁴. Combination of intramuscular racemic ketamine (1mgkg⁻¹ or 2mgkg⁻¹) and intramuscular midazolam (0,1mgkg⁻¹ or 0,2mgkg⁻¹) resulted in a very quick onset of satisfactory sedation in all patients. But this was at the expense of clinically unacceptable prolonged recovery and discharge times⁵².

Efficacy

It is difficult to assess the efficacy of ketamine, as there are not many trials that compare ketamine premedication to placebo. Oral ketamine 10mgkg^{-1} did not produce significant effects on preoperative sedation score, compared to placebo (anxiety scores 4.31 ± 0.79 vs 4.21 ± 0.79 , p=0,002) but it was successful in the reduction of perioperative pain⁹³. In another trial, 60% percent of patients had calm parental separation after 6mgkg⁻¹ ketamine. A mixture of oral ketamine 3mgkg⁻¹ and midazolam 0,25mgkg⁻¹ had the same result, but this was achieved earlier⁴⁷. Funk et al. reported a success rate (anxiolysis, behavior at separation) of 90% with the combination of oral ketamine 3mgkg⁻¹ and midazolam 0,25mgkg⁻¹ versus 70% and 51% with respectively midazolam 0,5mgkg⁻¹ and ketamine 6mgkg⁻¹ alone⁹⁸. Nebulized ketamine was able to provide effective sedation but did not have any advantage over nebulized dexmedetomidine as mask acceptance was lower^{36,93}. However, the combination of oral ketamine 3mgkg⁻¹ and intranasal dexmedetomidine 2µgkg⁻¹ is promising as this combines the onset time of ketamine with the reliability of dexmedetomidine⁸⁶. Rectal ketamine 8mgkg⁻¹ plus midazolam 0,5mgkg⁻¹ resulted in 62% of patients being asleep at parental separation 30 minutes later⁹⁷. Ten mgkg⁻¹ rectal ketamine was found to be equally effective as 1mgkg⁻¹ rectal midazolam⁴⁵. Nasal administration of 2mgkg⁻¹ S-ketamine shows good conditions for induction in 63% of patients. This happens within 2,5 minutes, which is very fast³⁴. Rectal appliance of S-ketamine either alone or combined with midazolam does not show any advantages over rectal midazolam⁹⁴.

Advantages-disadvantages

Ketamine does not cause hemodynamic or respiratory depression, which is an advantage¹⁵. Side effects are vomiting, sialorrhea, bronchial secretions requiring anticholinergics which makes ketamine not suitable for upper airway surgery^{13,15,57}. The incidence of postoperative nausea and vomiting is proportional to oral dose administered⁸⁶. The effect of ketamine on emergence delirium is disputable. Kararmaz et al. found that oral ketamine 6mgkg⁻¹ successfully reduced the incidence of emergence agitation⁹², while Trabold et al. stated that oral ketamine combined with midazolam does not have a significant benefit over midazolam alone⁹⁶. Nevertheless, ketamine might be an adequate treatment in children with paradoxical reactions or emergence agitation after midazolam premedication^{49,99}. Some of the benefits might be the result of the intrinsic analgesic effect of ketamine, which lasts postoperatively. Children premedicated with either 10mgkg⁻¹ rectal ketamine or oral/inhaled ketamine showed less postoperative pain, compared to controls^{45,93}. This effect of ketamine goes together with delayed emergence 45 and even discharge^{15,52} which is especially the case for operations shorter than 30 minutes. Side effects can be attenuated by using combinations with other drugs as described above.

Table III. — Recommendations.

Recommendation	Product	Route of adminis- tration	Toler- ance	Recommend- ed dose	Onset time	Onset	Efficacy	Safety and side effects
recommendable	midazolam	oral	high	1mgkg-1 (1-3years old); 0,75mgkg-1 (>3j old)	10-30min	fast- moderate	debatable	safe, minor side effects, paradoxical reactions, impair- ment of cognition
recommendable	clonidine	oral	high	4μgkg-1, 40- 60μg (young children)	38min	slow	good	safe, bradycardia (not requiring inter- vention)
recommendable	dexmedetomi- dine	intranasal	high	1µgkg-1 (<5 years old), 2µgkg-1 (>5years old)	20-30min	moderate	high	very safe, limited reduction of heart rate and mean arte- rial pressure
recommendable	ketamine + midazolam	oral	high	4mgkg-1 + 0,25mgkg-1	20 min	moderate	good-high	safe, minor side effects
considerable	diazepam + midazolam	oral	high	0,25mgkg-1 + 0,25mgkg- 1	45min	slow	high	safe, minor side effects
considerable	butorphanol	oral	unknown	0,2mgkg-1	20-30min	moderate	debatable	limited studies
considerable	ketamine	oral	high	5-6mgkg-1	10-20min	fast	good	major side effects: nausea, vomiting, sialorrhea
considerable	s-ketamine + midazolam	intranasal	low	2mgkg-1 + 0,2mgkg-1	2,5min	extremely fast	good	limited studies
considerable	hydroxyzine	oral	high	1mgkg-1	105min	very slow	unknown	very safe, limited studies
not recommendable	midazolam	intranasal	low	-	5-20min	(very) fast	debatable	burning sensation, low tolerance
not recommendable	midazolam	sublingual/ buccal	moderate	-	29,8±5,8min	moderate	debatable	limited studies
not recommendable	midazolam	rectal	low	-	33,7±3,4min	slow	unknown	not reliable
not recommendable	midazolam	intramus- cular	low	-	5-10min	fast	high	invasive
not recommendable	diazepam	oral	high	-	30-60min	(very) slow	unknown	minor side effects (hangover effect)
not recommendable	diazepam	rectal	low	-	?	unknown	debatable	not reliable
not recommendable	zolpidem	oral	high	-	15 min	fast	low	low efficacy, some side effects
not recommendable	melatonin	oral	high	-	15-60min	fast-very slow	debatable	not reliable, high safety
not recommendable	OTFC	oral trans- mucosal	high	-	30-45min	slow	low	major safety issues: r espiratory depression
not recommendable	clonidine	intranasal	high	-	?	unknown	low	low efficacy
not recommendable	clonidine	rectal	low	-	50min	very slow	unknown	major side effects: bradycardia
not recommendable	dexmedetomi- dine	oral	high	-	45-90min	very slow	(very)low	(very) low efficacy
not recommendable	dexmedetomi- dine	buccal/ sublingual	moderate	-	>45 min	very slow	unknown	difficult administra- tion, very slow onset
not recommendable	ketamine	transmu- cosal	high	-	30min	moderate	low	low efficacy
not recommendable	ketamine	intranasal	low	-	<10min	very fast	unknown	limited studies
not recommendable	ketamine	nebulized	moderate	-	30min	moderate	good-low	limited studies

not recommendable	ketamine	rectal	low	-	20-30min	moderate	very low - low	prologs postoperative discharge
not recommendable	ketamine	intramus- cular	low	-	5-10min	very fast	unknown	invasive
not recommendable	s-ketamine	rectal	low	-	?	unknown	low	major side effects: prolongs excitation
not recommendable	ketamine + midazolam	rectal	low	-	30min	moderate	good	limited studies
not recommendable	ketamine + midazolam	intramus- cular	low	-	5-10min	very fast	good	invasive
not recommendable	promethazine	oral	low	-	?	unknown	debatable	low tolerance, minor side effects
Recommendation			Toler- ance		Onset time	Onset	Efficacy	Efficacy
not recommendable			low		<5 min	extremely fast	<25%	very low
considerable			moderate		5-10 min	very fast	25-50%	low
recommendable			high		10-20min	fast	50-75%	good
highly recommandable					20-30min	moderate	>75%	high
					30-45min	slow	ŧ	debatable
					>45 min	very slow	?	unknown
					?	unknown		

Table III. — Recommendations.

B-7 Antihistamine

B-7.1 Hydroxyzine-promethazine

Hydroxyzine and promethazine are antihistamines with sedating properties. Hydroxyzine can be administered orally as a syrup or as a tablet. Three different doses of hydroxyzine were found: 1mgkg^{-1 100}, 3,7mgkg⁻¹ and a fixed dose of 20mg¹⁰¹. Oral promethazine is administered in a dose of 0,3mgkg^{-1 18}. Compared to placebo, administration of oral hydroxyzine 1mgkg⁻¹ and promethazine 1³/₄ hour prior to induction respectively resulted in a significant (p<0,05) better tolerance of inhalational induction^{18,100}. Promethazine was equally effective compared to oral midazolam 0,5mgkg⁻¹ regarding stress reduction at parental separation and induction¹⁸. Administration of 20mg oral hydroxyzine one day before dental treatment had no additional anxiolytic or sedative effect¹⁰¹. Advantages of these antihistamines are their price, their availability and intrinsic anti-emetic and little to no side effects^{18,101}. However, promethazine might cause a stinging sensation in the children's mouth¹⁸.

Discussion

The perfect premedication for children is a noninvasive, safe, and reliable anxiolytic, with a quick onset time and little to no adverse effects. Postoperative decrease of emergence agitation is a benefit. Different products have different properties and therefore unique advantages. Based upon the results of our review, some suggestions can be made(See Table III. Recommendations).

Oral midazolam has been the golden standard for long, with a fast to moderate onset time, high tolerance and few side effects. Efficacy of oral midazolam is dependent on the outcome parameter that has been used (anxiety versus sedation versus ease of mask induction) and is therefore a topic of debate. Oral clonidine in a dose of 4µgkg⁻¹ is slower, but considered equally effective to oral midazolam, with higher parental satisfaction. Orally disintegrating tablets and lollipops and additives are promising but need further research. Intranasally dexmedetomidine is the most reliable product, but this is at the expense of a relative onset time and peak effect. The combination of oral ketamine and midazolam on the other hand is faster, well tolerated with a high efficacy. Some other products like oral diazepam, butorphanol, ketamine intranasal s-ketamine + midazolam and hydroxyzine can be considered because of their proper safety and benefits. A tailored approach to the use of different premedications must be made based on the child's needs and comorbidities, the anesthesiologist's goals, and availability of each product. Nonpharmacological interventions were not studied but are nonetheless non-invasive and safe and should therefore be considered in most children.

A major limitation of this review is the large variability in study designs and results of all included studies. Different endpoints, study populations and various tools to assess perioperative anxiety make interstudy comparison difficult. Agents have a different onset time, which was not taken in account in studies that compared different types of premedications. This might lead to suboptimal assessment of anxiety (too early – i.e., before onset time, or too late – i.e., after peak sedative effect). Bias was not analyzed in this review.

Further research in this topic should focus on patient selection to choose a suitable intervention. Standardized assessment of anxiety, clinical significancy and feasibility should be included in the objectives of these studies.

Conflicts of interest: None declared.

Funding: No external funding has been received.

References

- Fortier MA, Del Rosario AM, Martin SR, Kain ZN. Perioperative anxiety in children. Paediatr Anaesth. 2010;20(4):318-22.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS medicine. 2021;18(3):e1003583-e.
- WHO Model List of Essential Medicines for Children

 8th list, 2021. In: Medicines Selection IaA, editor. 8th List ed. WHO Headquarters (HQ), Geneva: World Health Organization; 2021. p. 1.
- Yuen VM, Bailey CR. Premedication in children: does taste matter? Anaesthesia. 2018;73(12):1453-6.
- Coté CJ, Cohen IT, Suresh S, Rabb M, Rose JB, Weldon BC, et al. A comparison of three doses of a commercially prepared oral midazolam syrup in children. Anesth Analg. 2002;94(1):37-43.
- Martinez JL, Sutters KA, Waite S, Davis J, Medina E, Montano N, et al. A Comparison of Oral Diazepam Versus Midazolam, Administered With Intravenous Meperidine, as Premedication to Sedation for Pediatric Endoscopy. J Pediatr Gastroenterol Nutr. 2002;35(1):51-8.
- Brosius KK, Bannister CF. Midazolam premedication in children: A comparison of two oral dosage formulations on sedation score and plasma midazolam levels. Anesth Analg. 2003;96(2):392-5.
- Isik B, Baygin Ö, Bodur H. Effect of drinks that are added as flavoring in oral midazolam premedication on sedation success. Paediatr Anaesth. 2008;18(6):494-500.
- 9. Lammers CR, Rosner JL, Crockett DE, Chhokra R, Brock-Utne JG. Oral midazolam with an antacid may increase the speed of onset of sedation in children prior to general anaesthesia. Paediatr Anaesth. 2002;12(1):26-8.
- Salman S, Tang EKY, Cheung LC, Nguyen MN, Sommerfield D, Slevin L, et al. A novel, palatable paediatric oral formulation of midazolam: pharmacokinetics, tolerability, efficacy and safety. Anaesthesia. 2018;73(12):1469-77.
- Marçon F, Guittet C, Manso MA, Burton I, Granier L-A, Jacqmin P, et al. Population pharmacokinetic evaluation of ADV6209, an innovative oral solution of midazolam containing cyclodextrin. European journal of pharmaceutical sciences. 2018;114:46-54.
- Banchs RJMD, Lerman JMDFF. Preoperative Anxiety Management, Emergence Delirium, and Postoperative Behavior. Anesthesiol Clin. 2014;32(1):1-23.

- 13. Lerman J. Preoperative assessment and premedication in paediatrics. Eur J Anaesthesiol. 2013;30(11):645-50.
- 14. Hanna AH, Ramsingh D, Sullivan-Lewis W, Cano S, Leiter P, Wallace D, et al. A comparison of midazolam and zolpidem as oral premedication in children, a prospective randomized double-blinded clinical trial. Paediatr Anaesth. 2018;28(12):1109-15.
- McCann ME, Kain ZN. The management of preoperative anxiety in children: An update. Anesth Analg. 2001;93(1):98-105.
- 16. Fazi L, Jantzen EC, Rose JB, Kurth CD, Watcha MF. A comparison of oral clonidine and oral midazolam as preanesthetic medications in the pediatric tonsillectomy patient. Anesth Analg. 2001;92(1):56-61.
- 17. Zand F, Allahyary E, Hamidi AR. Postoperative agitation in preschool children following emergence from sevoflurane or halothane anesthesia: A randomized study on the forestalling effect of midazolam premedication versus parental presence at induction of anesthesia. Acta Anaesthesiol Taiwan. 2011;49(3):96-9.
- Nadri S, Mahmoudvand H, Taee N, Anbari K, Beiranvand S. Promethazine and Oral Midazolam Preanesthetic Children Medication. Pediatr Emerg Care. 2020;36(7):e369-e72.
- Sathyamoorthy M, Hamilton TB, Wilson G, Talluri R, Fawad L, Adamiak B, et al. Pre-medication before dental procedures: A randomized controlled study comparing intranasal dexmedetomidine with oral midazolam. Acta Anaesthesiol Scand. 2019;63(9):1162-8.
- Zhang CMD, Li JMD, Zhao DMD, Wang YMDP. Prophylactic Midazolam and Clonidine for Emergence from Agitation in Children After Emergence From Sevoflurane Anesthesia: A Meta-analysis. Clin Ther. 2013;35(10):1622-31.
- Özcengiz D, Gunes Y, Ozmete O. Oral melatonin, dexmedetomidine, and midazolam for prevention of postoperative agitation in children. J Anesth. 2011;25(2):184-8.
- 22. Schmidt AP, Valinetti EA, Bandeira D, Bertacchi MF, SimÕEs CM, Auler JOC. Effects of preanesthetic administration of midazolam, clonidine, or dexmedetomidine on postoperative pain and anxiety in children. Paediatr Anaesth. 2007;17(7):667-74.
- Singh V, Pathak M, Singh GP. Oral midazolam and oral butorphanol premedication. Indian J Pediatr. 2005;72(9):741-4.
- 24. Almenrader N, Passariello M, Coccetti B, Haiberger R, Pietropaoli P. Premedication in children: a comparison of oral midazolam and oral clonidine. Paediatr Anaesth. 2007;17(12):1143-9.
- 25. Horiuchi T, Kawaguchi M, Kurehara K, Kawaraguchi Y, Sasaoka N, Furuya H. Evaluation of relatively low dose of oral transmucosal ketamine premedication in children: a comparison with oral midazolam. Paediatr Anaesth. 2005;15(8):643-7.
- Kulka PJ, Bressem M, Tryba M. Clonidine prevents sevoflurane-induced agitation in children. Anesthesia and analgesia. 2001;93(2):335-8.
- 27. Wright KD, Stewart SH, Finley GA, Buffett-Jerrott SE. Prevention and Intervention Strategies to Alleviate Preoperative Anxiety in Children: A Critical Review. Behav Modif. 2007;31(1):52-79.
- 28. Mehrdad S, Shahriyar A, Farshid F, Mehrdad S, Ali A. Perioperative effects of oral midazolam premedication in children undergoing skin laser treatment: a double-blinded randomized placebo-controlled trial Efeitos peroperatórios da premedicação oral de midazolam em crianças submetidas a tratamento de pele por laser: estudo duplocego randomizado e controlado. Acta cirúrgica brasileira. 2011;26(4):303-9.
- 29. Masue T, Shimonaka H, Fukao I, Kasuya S, Kasuya Y, Dohi S. Oral high-dose midazolam premedication for infants and children undergoing cardiovascular surgery. Paediatr Anaesth. 2003;13(8):662-7.

- 30. Kogan A, Katz J, Efrat R, Eidelman LA. Premedication with midazolam in young children: a comparison of four routes of administration. Paediatr Anaesth. 2002;12(8):685-9.
- USP DI Drug information for the health care professional. 22nd ed. Greenwood Village: MICROMEDEX; 2002.
- 32. Akin A, Bayram A, Esmaoglu A, Tosun Z, Aksu R, Altuntas R, et al. Dexmedetomidine vs midazolam for premedication of pediatric patients undergoing anesthesia. Paediatr Anaesth. 2012;22(9):871-6.
- Baldwa NM, Padvi AV, Dave NM, Garasia MB. Atomised intranasal midazolam spray as premedication in pediatric patients: comparison between two doses of 0.2 and 0.3 mg/ kg. J Anesth. 2012;26(3):346-50.
- 34. Weber F, Wulf H, el Saeidi G. Premedication with nasal s-ketamine and midazolam provides good conditions for induction of anesthesia in preschool children. Can J Anaesth. 2003;50(5):470-5.
- 35. Lam C, Udin RD, Malamed SF, Good DL, Forrest JL. Midazolam premedication in children: a pilot study comparing intramuscular and intranasal administration. Anesth Prog. 2005;52(2):56-61.
- 36. Abdel-Ghaffar HS, Kamal SM, El Sherif FA, Mohamed SA. Comparison of nebulised dexmedetomidine, ketamine, or midazolam for premedication in preschool children undergoing bone marrow biopsy. Br J Anaesth. 2018;121(2):445-52.
- 37. Chiaretti A, Barone G, Rigante D, Ruggiero A, Pierri F, Barbi E, et al. Intranasal lidocaine and midazolam for procedural sedation in children. Archives of disease in childhood. 2011;96(2):160-3.
- Pant D, Sethi N, Sood J. Comparison of sublingual midazolam and dexmedetomidine for premedication in children. Minerva Anestesiol. 2014;80(2):167-75.
- 39. Millar K, Asbury AJ, Bowman AW, Hosey MT, Martin K, Musiello T, et al. A randomised placebo-controlled trial of the effects of midazolam premedication on children's postoperative cognition. Anaesthesia. 2007;62(9):923-30.
- 40. Millar K, Welbury R, Hosey MT, Asbury AJ, Musiello T, Bowman AW, et al. The effect of transmucosal 0.2 mg/kg midazolam premedication on dental anxiety, anaesthetic induction and psychological morbidity in children undergoing general anaesthesia for tooth extraction. Br Dent J. 2009;207(1):E2-E.
- Garnock-Jones KP. Oromucosal Midazolam: A Review of Its Use in Pediatric Patients with Prolonged Acute Convulsive Seizures. Paediatric drugs. 2012;14(4):251-61.
- 42. Bergendahl HTG, Lonnqvist PA, Eksborg S, Ruthstrom E, Nordenberg L, Zetterqvist H, et al. Clonidine vs. midazolam as premedication in children undergoing adenotonsillectomy: A prospective, randomized, controlled clinical trial. Acta Anaesthesiol Scand. 2004;48(10):1292-300.
- 43. Constant I, Leport Y, Richard P, Moutard ML, Murat I. Agitation and changes of Bispectral Index[™] and electroencephalographic-derived variables during sevoflurane induction in children: Clonidine premedication reduces agitation compared with midazolam. Br J Anaesth. 2004;92(4):504-11.
- 44. Bergendahl H, Lonnqvist PA, Eksborg S. Clonidine in paediatric anaesthesia: review of the literature and comparison with benzodiazepines for premedication. Acta Anaesthesiol Scand. 2006;50(2):135-43.
- 45. Tanaka M, Sato M, Saito A, Nishikawa T. Reevaluation of rectal ketamine premedication in children: Comparison with rectal midazolam. Anesthesiology. 2000;93(5):1217-24.
- 46. Sola C, Lefauconnier A, Bringuier S, Raux O, Capdevila X, Dadure C. Childhood preoperative anxiolysis: Is sedation and distraction better than either alone? A prospective randomized study. Paediatr Anaesth. 2017;27(8):827-34.
- 47. Darlong V, Shende D, Subramanyam MS, Sunder R, Naik A. Oral ketamine or midazolam or low dose combination

for premedication in children. Anaesth Intensive Care. 2004;32(2):246-9.

- 48. Yuen VM, Hui TW, Irwin MG, Yuen MK. A comparison of intranasal dexmedetomidine and oral midazolam for premedication in pediatric anesthesia: A doubleblinded randomized controlled trial. Anesth Analg. 2008;106(6):1715-21.
- 49. Golparvar M, Saghaei M, Sajedi P, Razavi SS. Paradoxical reaction following intravenous midazolam premedication in pediatric patients – a randomized placebo controlled trial of ketamine for rapid tranquilization. Paediatr Anaesth. 2004;14(11):924-30.
- Suffett-Jerrott SE, Stewart SH, Finley GA, Loughlan HL. Effects of benzodiazepines on explicit memory in a paediatric surgery setting. Psychopharmacology (Berl). 2003;168(4):377-86.
- 51. Stewart B, Cazzell MA, Pearcy T. Single-Blinded Randomized Controlled Study on Use of Interactive Distraction Versus Oral Midazolam to Reduce Pediatric Preoperative Anxiety, Emergence Delirium, and Postanesthesia Length of Stay. Journal of PeriAnesthesia Nursing. 2019;34(3):567-75.
- 52. Verghese ST, Hannallah RS, Patel RI, Patel KM. Ketamine and midazolam is an inappropriate preinduction combination in uncooperative children undergoing brief ambulatory procedures. Paediatr Anaesth. 2003;13(3):228-32.
- 53. Garcia A, Clark EA, Rana S, Preciado D, Jeha GM, Viswanath O, et al. Effects of Premedication With Midazolam on Recovery and Discharge Times After Tonsillectomy and Adenoidectomy. Curēus (Palo Alto, CA). 2021;13(2):e13101-e.
- Cultrara A, Bennett GH, Lazar C, Bernstein J, Goldstein N. Preoperative sedation in pediatric patients with sleepdisordered breathing. International journal of pediatric otorhinolaryngology. 2002;66(3):243-6.
- 55. Hamod MN, Kouchaji C, Rostom F, Alzoubi H, Katbeh I, Tuturov N. Evaluation of the Efficacy of Nasal Sedation Midazolam Compared with Dexmedetomidine in the Management of Uncooperative Children with Down Syndrome during Dental Treatment. International journal of dentistry. 2022;2022:1-6.
- 56. Arai YCP, Fukunaga K, Hirota S. Comparison of a combination of midazolam and diazepam and midazolam alone as oral premedication on preanesthetic and emergence condition in children. Acta Anaesthesiol Scand. 2005;49(5):698-701.
- 57. Filatov SM, Baer GA, Rorarius MGF, Oikkonen M. Efficacy and safety of premedication with oral ketamine for day-case adenoidectomy compared with rectal diazepam/diclofenac and EMLA: Oral ketamine premedication in small children. Acta anaesthesiologica Scandinavica. 2000;44(1):118-24.
- Sakurai Y, Obata T, Odaka A, Terui K, Tamura M, Miyao H. Buccal administration of dexmedetomidine as a preanesthetic in children. J Anesth. 2010;24(1):49-53.
- 59. Gitto E, Marseglia L, D'Angelo G, Manti S, Crisafi C, Montalto AS, et al. Melatonin versus midazolam premedication in children undergoing surgery: A pilot study. Journal of Paediatrics and Child Health. 2016;52(3):291-5.
- 60. Almenrader N, Haiberger R, Passariello M, Lonnqvist PA. Steal induction in preschool children: is melatonin as good as clonidine? A prospective, randomized study. Paediatr Anaesth. 2013;23(4):328-33.
- Harpsøe NG, Andersen LPH, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. European journal of clinical pharmacology. 2015;71(8):901-9.
- 62. Sury MRJ, Fairweather K. The effect of melatonin on sedation of children undergoing magnetic resonance imaging. Br J Anaesth. 2006;97(2):220-5.
- 63. Kurdi M, Muthukalai S. A comparison of the effect of two doses of oral melatonin with oral midazolam and placebo on pre-operative anxiety, cognition and psychomotor

function in children: A randomised double-blind study. Indian J Anaesth. 2016;60(10):744-50.

- 64. Kain ZN, Maclaren JE, Herrmann L, Mayes L, Rosenbaum A, Hata J, et al. Preoperative melatonin and its effects on induction and emergence in children undergoing anesthesia and surgery. Anesthesiology. 2009;111(1):44-9.
- 65. Patel T, Kurdi MS. A comparative study between oral melatonin and oral midazolam on preoperative anxiety, cognitive, and psychomotor functions. J Anaesthesiol Clin Pharmacol. 2015;31(1):37-43.
- 66. Binstock W, Rubin R, Bachman C, Kahana M, McDade W, Lynch JP. The effect of premedication with OTFC, with or without ondansetron, on postoperative agitation, and nausea and vomiting in pediatric ambulatory patients. Paediatr Anaesth. 2004;14(9):759-67.
- Mandel LDDS, Carunchio MJBS. Rampant caries from oral transmucosal fentanyl citrate lozenge abuse. The Journal of the American Dental Association (1939). 2011;142(4):406-9.
- 68. Sinha C, Kaur M, Kumar A, Kulkarni A, Ambareesha M, Upadya M. Comparative evaluation of midazolam and butorphanol as oral premedication in pediatric patients. Journal of anaesthesiology, clinical pharmacology. 2012;28(1):32-5.
- 69. Nishina K, Mikawa K. Clonidine in paediatric anaesthesia. Curr Opin Anaesthesiol. 2002;15(3):309-16.
- Larsson P, Nordlinder A, Bergendahl HTG, Lönnqvist PA, Eksborg S, Almenrader N, et al. Oral bioavailability of clonidine in children. Paediatr Anaesth. 2011;21(3):335-40.
- Yaguchi Y, Inomata S, Kihara S-I, Baba Y, Kohda Y, Toyooka H. The reduction in minimum alveolar concentration for tracheal extubation after clonidine premedication in children. Anesth Analg. 2002;94(4):863-6.
- 72. Larsson PG, Eksborg S, Lönnqvist PA, Anderson B. Incidence of bradycardia at arrival to the operating room after oral or intravenous premedication with clonidine in children. Paediatr Anaesth. 2015;25(9):956-62.
- 73. Gulhas N, Turkoz A, Durmus M, Togal T, Gedik E, Ersoy MO. Oral clonidine premedication does not reduce postoperative vomiting in children undergoing strabismus surgery: Clonidine and vomiting in strabismus surgery. Acta anaesthesiologica Scandinavica. 2003;47(1):90-3.
- Mikawa K, Nishina K, Shiga M. Prevention of sevofluraneinduced agitation with oral clonidine premedication [14]. Anesth Analg. 2002;94(6):1675-6.
- 75. Sumiya K, Homma M, Watanabe M, Baba Y, Inomata S-i, Kihara S-i, et al. Sedation and Plasma Concentration of Clonidine Hydrochloride for Pre-anesthetic Medication in Pediatric Surgery. Biol Pharm Bull. 2003;26(4):421-3.
- Homma M, Sumiya K, Kambayashi Y, Inomata S-i, Kohda Y. Assessment of Clonidine Orally Disintegrating Tablet for Pre-anesthetic Medication in Pediatric Surgery. Biol Pharm Bull. 2006;29(2):321-3.
- 77. Almenrader N, Larsson P, Passariello M, Haiberger R, Pietropaoli P, LÖNnqvist PA, et al. Absorption pharmacokinetics of clonidine nasal drops in children. Paediatr Anaesth. 2009;19(3):257-61.
- Larsson P, Eksborg S, Lönnqvist P-A. Onset time for pharmacologic premedication with clonidine as a nasal aerosol: a double-blind, placebo-controlled, randomized trial: Clonidine as nasal aerosol. Pediatric anesthesia. 2012;22(9):877-83.
- 79. Inomata S, Kihara S, Yaguchi Y, Baba Y, Kohda Y, Toyooka H. Reduction in standard MAC and MAC for intubation after clonidine premedication in children. Br J Anaesth. 2000;85(5):700-4.
- Nader ND, Ignatowski TA, Kurek CJ, Knight PR, Spengler RN. Clonidine suppresses plasma and cerebrospinal fluid concentrations of TNF-alpha during the perioperative period. Anesth Analg. 2001;93(2):363-9.
- 81. Handa F, Fujii Y. The efficacy of oral clonidine premedication in the prevention of postoperative vomiting

in children following strabismus surgery. Paediatr Anaesth. 2001;11(1):71-4.

- Mikawa K, Nishina K, Maekawa N, Asano M, Obara H. Oral clonidine premedication reduces vomiting in children after strabismus surgery. American journal of ophthalmology. 1996;121(3):343-.
- 83. Cimen ZS, Hanci A, Sivrikaya GU, Kilinc LT, Erol MK, Lerman J. Comparison of buccal and nasal dexmedetomidine premedication for pediatric patients. Paediatr Anaesth. 2013;23(2):134-8.
- 84. Yuen VM, Hui TW, Irwin MG, Yao TJ, Chan L, Wong GL, et al. A randomised comparison of two intranasal dexmedetomidine doses for premedication in children. Anaesthesia. 2012;67(11):1210-6.
- 85. Lin YMD, Chen YMD, Huang JMD, Chen HMD, Shen WMD, Guo WMD, et al. Efficacy of premedication with intranasal dexmedetomidine on inhalational induction and postoperative emergence agitation in pediatric undergoing cataract surgery with sevoflurane. J Clin Anesth. 2016;33:289-95.
- 86. Jia JE, Chen JY, Hu X, Li WX. A randomised study of intranasal dexmedetomidine and oral ketamine for premedication in children. Anaesthesia. 2013;68(9):944-9.
- Anttila M, Penttilä J, Helminen A, Vuorilehto L, Scheinin H. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol. 2003;56(6):691-3.
- Zub D, Berkenbosch JW, Tobias JD. Preliminary experience with oral dexmedetomidine for procedural and anesthetic premedication. Paediatr Anaesth. 2005;15(11):932-8.
- 89. Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010;54(6):710-6.
- Koo E, Oshodi T, Meschter C, Ebrahimnejad A, Dong G. Neurotoxic effects of dexmedetomidine in fetal cynomolgus monkey brains. J Toxicol Sci. 2014;39(2):251-62.
- 91. Sun L, Guo R. Dexmedetomidine for preventing sevoflurane-related emergence agitation in children: a meta-analysis of randomized controlled trials. Acta Anaesthesiol Scand. 2014;58(6):642-50.
- Kararmaz A, Kaya S, Turhanoglu S, Ozyilmaz MA. Oral ketamine premedication can prevent emergence agitation in children after desflurane anaesthesia. Paediatr Anaesth. 2004;14(6):477-82.
- 93. Chen C, Cheng X, Lin L, Fu F. Preanesthetic nebulized ketamine vs preanesthetic oral ketamine for sedation and postoperative pain management in children for elective surgery: A retrospective analysis for effectiveness and safety. Medicine. 2021;100(6):e24605-e.
- 94. Marhofer P, Freitag H, Höchtl A, Greher M, Erlacher W, Semsroth M. S(+)-ketamine for rectal premedication in children. Anesth Analg. 2001;92(1):62-5.
- 95. Ghai B, Grandhe RP, Kumar A, Chari P. Comparative evaluation of midazolam and ketamine with midazolam alone as oral premedication. Paediatr Anaesth. 2005;15(7):554-9.
- 96. Trabold B, Rzepecki A, Sauer K, Hobbhahn J. A comparison of two different doses of ketamine with midazolam and midazolam alone as oral preanaesthetic medication on recovery after sevoflurane anaesthesia in children. Paediatr Anaesth. 2002;12(8):690-3.
- 97. Wang X, Zhou ZJ, Zhang XF, Zheng S. A comparison of two different doses of rectal ketamine added to 0.5 mg.kg⁽⁻¹⁾ midazolam and 0.02 mg.kg⁽⁻¹⁾ atropine in infants and young children. Anaesthesia and intensive care. 2010;38(5):900-4.
- 98. Funk W, Jakob W, Riedl T, Taeger K. Oral preanaesthetic medication for children: double-blind randomized study of a combination of midazolam and ketamine vs midazolam or ketamine alone. Br J Anaesth. 2000;84(3):335-40.

- 99. Tsai PS, Hsu YW, Lin CS, Ko YP, Huang CJ. Ketamine but not propofol provides additional effects on attenuating sevoflurane-induced emergence agitation in midazolam premedicated pediatric patients. Paediatr Anaesth. 2008;18(11):1114-5.
- 100. Trifa M, Ben Khalifa S, Gargouri F, Kaouech N, Friaa M. Effects of hydroxyzine on tolerance of facial mask during induction in children. Ann Fr Anesth Reanim. 2010;29(1):53-4.
- 101. Faytrouny M, Okte Z, Kucukyavuz Z. Comparison of two different dosages of hydroxyzine for sedation in the paediatric dental patient. Int J Paediatr Dent. 2007;17(5):378-82.
- 102. Golden L, Pagala M, Sukhavasi S, Nagpal D, Ahmad A, Mahanta A. Giving toys to children reduces their anxiety about receiving premedication for surgery. Anesth Analg. 2006;102(4):1070-2.
- 103. Isik B, Baygin Ö, Bodur H. Premedication with melatonin vs midazolam in anxious children. Paediatr Anaesth. 2008;18(7):635-41.
- 104. Yuen VM, Irwin MG, Hui TW, Yuen MK, Lee LHY. A double-blind, crossover assessment of the sedative and analgesic effects of intranasal dexmedetomidine. Anesth Analg. 2007;105(2):374-80.

doi.org/10.56126/74.3.22