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Abstract 

Artificial intelligence (AI) is rapidly evolving and gaining attention in the medical world. Our aim is to provide 
readers with insights into this quickly changing medical landscape and the role of clinicians in the middle of this 
popular technology. In this review, our aim is to explain some of the increasingly frequently used AI terminology 
explicitly for physicians. Next, we give a summation, an overview of currently existing applications, future 
possibilities for AI in the medical field of anesthesiology and thoroughly highlight possible problems that could 
arise from implementing this technology in daily practice. 
Therefore, we conducted a literature search, including all types of articles published between the first of January 
2010 and the 1st of May 2023, written in English, and having a free full text available. We searched Pubmed, 
Medline, and Embase using “artificial intelligence”, “machine learning”, “deep learning”, “neural networks” 
and “anesthesiology” as MESH terms.
To structure these findings, we divided the results into five categories: preoperatively, perioperatively, 
postoperatively, AI in the intensive care unit and finally, AI used for teaching purposes. In the first category, 
we found AI applications for airway assessment, risk prediction, and logistic support. Secondly, we made 
a summation of AI applications used during the operation. AI can predict hypotensive events, delivering 
automated anesthesia, reducing false alarms, and aiding in the analysis of ultrasound anatomy in locoregional 
anesthesia and echocardiography. Thirdly, namely postoperatively, AI can be applied in predicting acute kidney 
injury, pulmonary complications, postoperative cognitive dysfunction and can help to diagnose postoperative 
pain in children. 
At the intensive care unit, AI tools discriminate acute respiratory distress syndrome (ARDS) from pulmonary 
oedema in pleural ultrasound, predict mortality and sepsis more accurately, and predict survival rates in 
severe Coronavirus-19 (COVID-19). Finally, AI has been described in training residents in spinal ultrasound, 
simulation, and plexus block anatomy.
Several concerns must be addressed regarding the use of AI. Firstly, this software does not explain its decision 
process (i.e., the ‘black box problem’). Secondly, to develop AI models and decision support systems, we need 
big and accurate datasets, unfortunately with potential unknown bias. Thirdly, we need an ethical and legal 
framework before implementing this technology. At the end of this paper, we discuss whether this technology 
will be able to replace the clinician one day.
This paper adds value to already existing literature because it not only offers a summation of existing 
literature on AI applications in anesthesiology but also gives clear definitions of AI itself and critically assesses 
implementation of this technology.
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Introduction

Why AI?

The famous AI chatbot “ChatGPT” (OpenAI, San 
Francisco, United States) successfully passed the 
threshold of 60% at the United States Medical 
Licensing Exam (USMLE) without input from 
human trainers1. Furthermore, responses of this 
chatbot to anonymous medical questions on public 
social media forums were evaluated by a jury and 
compared to answers from physicians. Chatbot 
responses were classified as scientifically very 
good and more empathetic, now outperforming 
clinicians2. Since anesthesiology heavily relies on 
technology, AI found its way quickly to this branch 
of healthcare, where automation has already been 
proved to improve patient care3.

This paper aims to give a summation, an 
overview of currently existing applications for AI in 
the medical field of anesthesiology and thoroughly 
dig deeper into some problems that arise from 
implementing this technology in daily practice. 
Our goal is to provide readers with insights into 
this quickly changing medical landscape and the 
future role of clinicians in the middle of popular 
technology. 

The number of machine learning (ML) clinical 
trials has gradually increased in the past decade4, but 
the idea of automation is not new at all. Bickford 
introduced the first automated anesthesia system 
using EEG signals in 19505. It automatically 
delivered barbiturate and ether anesthesia in a rabbit, 
cat, monkey and man6. Over half a century later, 
McSleepy, an invention of the McGill University 
in Montréal, Quebec, Canada, was introduced with 
a similar feedback control system6. AI, however, 
is much more than solely a closed-loop feedback 
mechanism6, which we will explain further on.

Definitions

We summed up several definitions to gain a clear 
understanding of the basic concepts of AI. Terms 
such as ‘artificial intelligence’ and ‘machine 
learning’ or ‘deep learning’ are often used 
interchangeably, frequently leading to confusion7.
Artificial Intelligence is a subfield within computer 
science associated with constructing machines 
and computers capable of intelligent behavior, 
simulating the human decision capacity7. 

Machine learning is a part of AI, a subset. It can 
learn from experience without being programmed 
explicitly. All ML models are AI models by default, 
but not vice versa. ML is divided into supervised 
vs. unsupervised learning, hybrid semi-supervised 
learning and reinforcement learning8. Supervised 
learning trains the model with the correct answer, 

meaning the expert clinician gives the label, for 
example, annotated images. In unsupervised 
learning, the machine will reorganize data in clusters 
of similarities9. In reinforcement learning, models 
train with a mathematical reward system, learn from 
their mistakes, and adapt.

Deep learning (DL) is a subdivision of machine 
learning that recognizes patterns in data. This 
technique allows results obtained with neural 
networks in various fields. Artificial neural network 
architectures rely on neural layers, imitating 
the human brain6. In contrast to shallow neural 
networks, deep neural networks consist of more 
than two layers and are further divided by their 
architecture into recurrent neural networks (RNN)7, 
convolutional neural networks (CNN), and many 
more. Unlike other types of machine learning, 
deep learning does not require humans to interfere 
with the training process. Although the most 
popular ML method, deep learning is not the only 
machine learning model. Other examples are linear 
regression, logistic regression, decision trees, naïve 
Bayes, support vector machines, linear discriminant 
analysis etc. These techniques are sometimes called 
classical machine-learning models. ChatGPT (Open 
AI, San Francisco, United States) is based on a 
transformer architecture within AI. This technique 
excels in applying context in a sentence and in 
parallelization, which causes its speed. 

How well machine learning models perform 
is often indicated by AUC (AUROC, area under 
the receiver operating characteristics). Precision 
determines the percentage of correct positive 
predictions (true positive rate). Accuracy describes 
more generally how the model performs across 
all classes. It is calculated by dividing the number 
of correct predictions by the total number of 
predictions.

  
Methods

We searched Pubmed, Medline and Embase 
using MESH-terms “artificial intelligence”, 
“deep learning”, “neural networks” OR “machine 
learning” AND “anesthesia”, “anesthesiology”, 
“intensive care” in the title or abstract. We 
included all types of articles. Eligible articles were 
published between the first of January 2010 until 
the 1st of May 2023, written in English, and had a 
free full text available. 

Results

Included articles

We found 73 articles, of which 8 were excluded 
based on their relevance. We included one less 
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recent article because of its historical relevance. 
Later, we added a handful of articles, published 
between February and April of 2023.

Preoperative use of AI

Before surgery, it is essential to assess possible risks 
and complications and yet maintain efficiency. By 
this, admission to the intensive care unit, delayed 
recovery, and prolonged hospital stay can be 
predicted. AI can help to better assess airway risks 
and make predictions more accurate than current 
risk assessments, thereby making healthcare safer. 
However, it is also essential that the workflow 
in the operating theatre remains efficient and 
that productivity is guaranteed within this safety 
framework. AI can also aid at this logistic level.

Risk stratification

AI can help with risk stratification in preoperative 
settings10. Xue and colleagues created five machine-
learning models to predict lung complications after 
gastrointestinal surgery. Their logistic regression 
model had an AUC of 0.808 with an accuracy of 
0.824 and a precision of 0.621. The decision tree 
model had an AUC of 0.702 with an accuracy of 
0.795 and a precision of 0.486 and the gradient 
boosting model obtained an AUC of 0.814 with 
an accuracy of 0.806 and precision of 0.750. The 
other two models were comparable11. Moreover, 
retrospective data from previous surgeries, such as 
the clinical decisions made perioperatively by the 
anesthesiologists and the postoperative functional 
outcomes, could teach AI to give recommendations10.

Airway difficulties

AI is used in pediatric patients to predict difficult 
airways by analyzing 2D and 3D facial features, with 
a real-time application to detect tracheal anatomy, 
based on data from bronchoscopies12.

An estimated 75-93% of the problematic 
intubations are unanticipated13. Jong Ho Kim et al. 
conducted a retrospective cohort study on Asian 
subjects. They created an AI model to predict 
difficult intubation using only three variables: 
Mallampati grade, age and sternomental distance. 
Using a random forest prediction model, their model 
achieved an area under the receiver operating curve 
of 0.71 (95% CI 0.72 - 0.86)14.

Hayasaka et al. created a neural network model 
to link facial characteristics with airway difficulties. 
They took pictures of 202 patients in 16 different 
positions. Their model achieved a high predictive 
value with an area under the curve of 0.864 (95% 
CI 0.731 - 0.969) with an accuracy of 80.5%, 
sensitivity of 81.8%, specificity of 83.3%, based on 
the picture taken in a supine neutral position with 

Table I. — There were no differences in demographic 
characteristics between pediatric subjects who received 
midazolam, dexmedetomidine (2µg/kg) or dexmedetomidine 
(4µg/kg) premedications.

mouth closed15.

Operating theatre logistics

Hashimoto et al. reviewed three studies that used 
AI for operating room logistics, but none achieved 
more than 60% accuracy in predicting surgical 
duration16,17. AI could improve OR management, 
workflow, and scheduling to increase efficiency9.

Intraoperative use of AI

Intraoperative awareness is a dreadful complication, 
as is prolonged hypotension, massive bleeding 
or residual curarization. Thanks to artificial 
intelligence, aids have been developed to predict 
and detect these events. However, with yet another 
tool warning us, the alarm overload could cause 
inattention or alarm fatigue. 

Intraoperative imaging is becoming state-of-
the-art clinical perioperative practice. However, it 
is user dependent and has a steep learning curve. 
Two AI applications increasing the accuracy of 
perioperative ultrasound are discussed.

Depth of anesthesia

AI facilitates the ultimate development of closed-
loop systems by considering individual patient 
variability when controlling the delivery of 
anesthesia18.

Joosten et al. showed in a randomized controlled 
trial that automated anesthetic management using 
the combination of three controllers (end-tidal CO2 
concentration between 32 and 38 mmHg, fluid 
balance through continuous infusion and boluses of 
100 mL, based on analyses of stroke volume, heart 
rate, mean arterial pressure, stroke volume variation, 
and BIS > 40) outperformed manual control. People 
in the closed loop group showed a better cognition 
score one week after surgery. This effect persisted 
three months after surgery19.

Tacke et al. wanted to detect awareness using AI 
technology. However, they only collected data from 
EEG and auditory evoked potentials before and after, 
but not during surgery, rendering a final evaluation 
of the ability of AI to discriminate between 
perioperative consciousness and unconsciousness 
complex20.

Control systems for infusions of neuromuscular 
blocking drugs or (weaning from) mechanical 
ventilation have been described9. Neural 
networks have been used to predict recovery from 
neuromuscular blockade and hypotension after 
induction or spinal anesthesia9. 

Data (abdominal girth, vertebral column length) 
of 684 parturients undergoing cesarean section were 
used for a machine-learning algorithm to identify 
the optimal dose of intrathecal 0.5% hyperbaric 
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available for hypotension prediction29. In a study by 
Hollman, using hypotension prediction models, this 
group experienced less perioperative hypotension 
than compared to standard care30.

Monitoring and alarm settings

Conway tried to create a “smart alarm” that can 
alert prior to a predicted prolonged apneic event 
(i.e. > 30 seconds) in procedural sedation, using 
capnography. However, this model was not superior 
to the conservative strategy31.

Perioperative imaging

Echocardiographical images are frequently 
associated with interobserver variability32. The 
“eSie Valve Software” (Siemens, Groot-Bijgaarden, 
België) was tested in the retrospective analysis of 
perioperative 3D TEE data from four patients 
undergoing CABG and found to reliably perform 
automated analyses of the mitral valve with good 
reproducibility32.

AutoLV (TomTec-Arena, Unterschleissheim, 
Germany) can offer automated left ventricle ejection 
fraction measurements in only 8 seconds. It takes 
82% less time and correlates better with cardiac 
output measured by thermodilution than by manual 
echocardiographic measurements33.

Postoperative use of AI

The opioid crisis raised awareness about the use of 
opioids. In chronically opioid-exposed patients, pain 
management after surgery can be challenging. Two 
studies investigated this subject. 

Postoperatively, it is crucial not only to predict 
pain but also postoperative organ dysfunction, 
delirium and in-hospital mortality. AI predictive 
models have been described for each of these 
subjects.

Pain management

AI has been used to predict opioid dosing and which 
patients would respond to opioid therapy for acute 
pain; based on preoperative electroencephalography 
assessment9. In children, Cheng et al. proposed a 
study protocol of a systematic review and meta-
analysis to compare different facial expression-
based ML algorithms to evaluate pain34.

Prediction of postoperative organ dysfunction or 
mortality 

Zhang et al. retrospectively analyzed 780 adult liver 
transplant cases, creating a gradient-boosting model 
with an AUC for the internal validation set of 0.76 
(95% CI 0.70 - 0.82) and an AUC of 0.75 (95% CI 
0.67 - 0.81) on the external validation set to predict 
acute kidney injury (AKI)31. Lee et al. found that 

bupivacaine to achieve an appropriate block level 
from T4-T6 without risking hypotension21. Wei et 
al., therefore, developed a decision model with a 
determination coefficient (R²) of 0.8070 and a mean 
squared error (MSE) of 0.0087, meaning the model 
is nearly perfect21.

Predicting adverse events

Yet undiagnosed heart failure with reduced ejection 
fraction was detected in 0.41% of 67697 patients 
undergoing non-cardiac surgery via machine 
learning approaches. The AUC for their logistic 
regression model was 0.869 (95% CI 0.829 - 0.911), 
0.872 (95% CI 0.836 - 0.909) for the random forest 
model and 0.873 (95% CI 0.833 - 0.913) for the 
extreme gradient boosting model. However, the low 
prevalence of the disease in this population resulted 
in a low positive predictive value, mandating 
confirmatory testing with high specificity22.

Bai et al. developed an ML method to analyze 
cerebral and myocardial infarction risk factors after 
carotid endarterectomy. Studying 443 patients, the 
incidence of cerebral infarction was 1.4%, and that 
of myocardial infarction was 2.3%. They identified 
eight predictive factors such as blood pressure, body 
mass index, and age. However, in cross-validation, 
their prediction model was highly fluctuating23.

Blood loss during surgery can be challenging to 
estimate. Through image acquisition and connected 
convolutional networks, estimated blood loss and 
estimated hemoglobin loss were estimated more 
accurately. They obtained an R2 of 0.966 (95% CI 
0.962 – 0.971)24.

Artificial intelligence (AI) is increasingly used to 
predict intraoperative hypotension (IOH)25. Kendale 
et al. compared several predictive models and their 
AUC, namely: logistic regression, support vector 
machines, naïve Bayes, k-nearest neighbor, linear 
discriminant analysis, random forest, neural nets 
and gradient boosting machine. The AUC of the 
gradient boosting machine was the highest, namely 
0.76 (95% CI, 0.75 - 0.77). The test set AUC for 
the gradient boosting machine was 0.74 (95% CI, 
0.72 - 0.77)25.

 Lee et al. developed a random forest model 
that predicts hypotension with 74.89% accuracy 
one minute in advance26. Frassanito et al. used 
continuous arterial pressure waveforms to predict 
IOH with an AUC of 0.93 (95% CI 0.89 - 0.97), 0.9 
(95% CI 0.83 - 0.97), and 0.95 (95% CI 0.89 - 0.99) 
respectively 5, 10, and 15 minutes before the event27.

Li et al. obtained an AUC of 0.843 (95% CI 
0.808 - 0.877) in predicting hypotension in cardiac 
surgery using a random forest model28. AI models 
such as HemoSphere (Edwards Lifesciences, Irvine, 
Washington, United States) are commercially 
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their gradient-boosting technique showed better 
accuracy than logistic regression in predicting new-
onset AKI in a retrospective study of 2010 patients, 
respectively an AUC of 0.78 (95% 0.75 - 0.80) 
versus an AUC of 0.69 (95% CI 0.66 - 0.72)36. 

Zhao et al. used ML methods to detect 16 risk 
factors for postoperative delirium in older patients 
undergoing hip fracture surgery, achieving an 
AUC of 0.779 (95% CI 0.703 – 0.856). Preparation 
time, frailty index, use of vasopressors during the 
surgery, dementia or history of stroke, duration of 
surgery, and anesthesia were the six most important 
predictors of delirium37.

Lee et al. also investigated ML models to predict 
postoperative in-hospital mortality using data 
from 59 985 surgical records. Their GAM Neural 
network model achieved an AUC of 0.921 (95% CI 
0.895 – 0.95)38.

AI in the intensive care unit

Predicting outcomes and mortality of patients 
admitted at an ICU can be highly challenging. By 
analyzing large datasets, different investigators’ 
groups created an AI model improving the current 
state of the art. AI tools have been developed 
as decision aid systems or as a diagnostic aid to 
manage life-threatening situations with often poor 
outcomes. AI can also be incorporated into less 
critical circumstances that improve patient care and 
well-being, like pain management, alarm settings or 
dental hygiene.

Predicting outcome and mortality

At the ICU, AI has been proven helpful in severity 
scoring, mortality prediction and prediction of 
sepsis in an early phase8. AI outperformed systemic 
inflammatory response syndrome criteria (SIRS) 
and the sequential organ failure assessment score 
(SOFA score) in detecting early sepsis, decreasing 
hospital length of stay and in-hospital mortality9. 
This is confirmed by Churpek et al. during the 
COVID-19 pandemic. Including 5075 patients in 68 
different United States ICUs, their extreme gradient 
boosting model had an AUC of 0.81 (95% CI 0.78 
- 0.85) compared to 0.69 (95% CI 0.65 - 0.73) from 
the SOFA score or AUC of 0.60 (95% CI 0.55 - 
0.64) from the National Early Warning Score, in 
predicting in-hospital death within 28 days of the 
ICU admission39.

AI has also been used to predict neurological 
outcomes after out-of-hospital cardiac arrest 
(OHCA). Andersson et al. performed a post hoc 
multicenter analysis of 932 patients. Their model 
based on integrated clinical variables and accessible 
biomarkers such as NSE (neuron-specific enolase) 
achieved an AUC of 0.94 (95% CI 0.894 - 0.988). 

They aimed for zero false-positive predictions, 
which could result in the withdrawal of life-
sustaining therapies in patients who would have had 
a good outcome40.

Another European investigation was conducted 
using neural networks to predict outcomes in OHCA 
patients. With only three variables (age, time to 
return of spontaneous circulation (ROSC) and 
first monitored rhythm), their ML model showed 
an AUC above 0.852 (95% CI 0.835 – 0.869) in 
predicting 180 days functional outcome, including 
survival. When 54 variables were considered, the 
AUC rose even more but is not practical in its use41.

Ghassemi and his team analyzed 12 397 hours 
of EEG from 438 subjects to predict recovery in 
hypoxic-ischemic encephalopathy. They obtained 
an AUC of 0.83 (95% CI 0.75 – 0.91) in predicting 
6-month functional outcomes42.

Diagnostic aid and decision making

ARDS is difficult to discriminate from acute 
cardiogenic pulmonary oedema (CPE), especially 
considering the recent pandemic43. Therefore, 
Brusasco and her team developed a computer-aided 
diagnosis to determine those two life-threatening 
conditions on pleural ultrasound images, including 
patients prospectively. Their model was based 
on different texture features seen on ultrasound; 
for example, the AUC for contrast-based textural 
differences was 0.891 (95% CI 0.726 – 1.000) in 
differentiating both diseases44.

Not only in pulmonary diseases but also 
in sepsis, AI has proven its use. Komorowski 
and colleagues developed the AI Clinician, a 
computational model using reinforcement learning, 
which can dynamically suggest optimal treatments 
(administration of fluid or vasopressors) for adult 
patients with sepsis in the intensive care unit (ICU). 
In an independent cohort, the patients who received 
the treatments suggested by the AI Clinician had 
the lowest mortality rate45.

In Hong Kong, researchers developed a deep 
learning model using data from 10941 critically 
ill patients from 209 ICUs to predict the need for 
vasopressor therapy within the first two hours of 
ICU admission. This neural network-based Bi-
LSTM model achieved an area under the curve of 
0.96 (95%CI 0.96 - 0.96). Heart rate, respiratory 
rate, and mean arterial pressure contributed most 
to the model, amongst other serial physiological 
variables of systolic blood pressure, diastolic blood 
pressure, pulse oximetry and temperature46.

Monitoring pain

A team from Singapore analyzed 746 video clips 
of 63 critically ill patients using AI. Although they 
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Gungor et al. assessed the accuracy of an AI-
based real-time anatomy identification software 
specifically designed for peripheral nerve block. 
Forty healthy participants underwent four ultrasound 
procedures (supraclavicular, infraclavicular, 
inter scalene and transversus abdominis plane 
block (TAP)) without block performance. They 
conducted a kappa test to examine the agreement 
level between the two expert validators’ evaluation 
scores. The Cohen’s kappa value for the TAP 
block, inter scalene block, supraclavicular and 
infraclavicular block were respectively 0.95, 
0.98, 0.96 and 0.97, indicating that AI technology 
can successfully interpret anatomical structures 
in real-time sonography while assisting young 
anesthesiologists during practice55. 

AnatomyGuide (Intelligent Ultrasound Limited, 
Cardiff, UK) is a system based on AI technologies. 
One hundred twenty thousand images were used 
in the training set for each block. The initial skill 
acquisition and the period required for direct 
supervision could be shortened by highlighting 
the relevant structures. However, this technology 
is expensive and does not indicate nuances such 
as probe pressure, angulation, rotation, tilting or 
needle-probe coordination56.

Another AI model improved the accuracy of the 
image and reduced the time from needle puncture 
to completion of injection (7.5 minutes compared to 
10.2 minutes in the control group) in 100 patients 
with a scapular fracture to perform nerve block57.

Simulation education

Using AI, fictional case scenarios can be generated. 
For example, artificial breast ultrasound images 
have been created based on a pre-existing database. 
Generating these artificial images can be a time-
gaining step in preparing scenarios58.

Critical remarks on AI implementation in healthcare

Artificial intelligence became very popular in a 
short period of time. It is often presented as the 
solution to many problems, the holy grail, without 
realizing this technology can also cause some big 
issues. Geoffrey Hinton, the man often referred to 
as the “godfather of AI”, recently quit his job at 
Google and warned us in multiple statements for 
the possible dangers of this growing technology.

Data-dependency

AI can aid human providers in reducing the work 
burden and compiling and analyzing data but cannot 
replace human beings in day-to-day care59. The big 
obstacle to the widespread implementation of AI in 
healthcare is the mandatory access to large amounts 
of good quality data, upon which AI algorithms 

experienced difficulties since medical devices and 
oedema masked some facial areas, their deep-
learning-based pain classifier did detect pain with 
an accuracy of 80%-90%47.

Ventilation

In pandemic situations, real-time monitoring can 
be challenging. Radhakrishnan et al. developed 
a neural network model to predict the level of 
inspired oxygen delivered by the mechanical 
ventilator along with ventilation mode and positive 
end-expiratory pressure (PEEP) changes to reduce 
the efforts of healthcare professionals48.

Alarm settings

The high number of false positive alarms at the ICU 
increases the workload for the personnel. Al could 
help to reduce alarm fatigue49. Fernandes et al. state 
that 80-99% of alarms in hospital units are false or 
clinically insignificant, leading to an alert overload.  
Providing a reasoning system based on AI could 
reduce the notifications by up to 99.3%50.

Day-to-day care

Scquizzato introduced smart toothbrushes to 
help prevent ventilator-associated pneumonia in 
critically ill patients, using built-in 3D51.

AI as a tool for teaching

Simulation classes prepare young colleagues for 
adverse events in a safe learning environment. 
Many articles investigated this subject with positive 
results.

Neuraxial and locoregional anesthesia

Chan et al. developed an ultrasound-guided 
automated spinal landmark identification program 
to identify the insertion point of the spinal needle. In 
48 obese patients, the first-attempt success rate was 
79.1%. This software can also be helpful in patients 
with abnormal spine, scoliosis, and previous spinal 
surgery. In this population, they reported a first-
attempt success of 32% with palpation and an 
improvement to 65% using ultrasound imaging52.

In epidural procedures in obstetric anesthesia, 
machine learning has proven faster and more 
dose-effective in achieving a sensory level. The 
AI framework can also predict the incidence of 
hypotension with 85% accuracy53.

Combining ultrasound and AI with medical 
image fusion while performing neuraxial blocks 
can improve the success rate in patients with 
obesity, elderly patients and trauma patients with 
tissue oedema or fat infiltration and train residents. 
One main problem is that such a system cannot 
effectively avoid intraneural injection yet54.
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are built. Data protection issues play a major role 
in this context6. Better, more comprehensive and 
easily accessible datasets are prerequisites for AI 
applications to become clinically meaningful9. 
Data from different types of populations, races, or 
extremes of age should be incorporated into these 
machine-learning programs to avoid bias. There is 
no learning beside the given data possible.

Monitoring artefacts

Many of the AI strategies are based on data derived 
from (non-)invasive monitoring in the OR, which 
is vulnerable to various artefacts.  AI must correct 
its underlying algorithms for this type of ‘noise’ or 
alert the physician that something is wrong with the 
input signal60. For example, in acceleromyographic 
neuromuscular monitoring, AI successfully reduced 
outliers and increased reliability61.

The role of the anesthesiologist

With all these new technologies rapidly developing, 
will anesthesiologists become unnecessary one 
day? While AI could protect the human provider 
from cognitive overload, some authors have 
suggested that the anesthesiologists’ “hands” will 
always remain necessary, making full automation 
impossible62. However, if anesthesia is reduced to 
its mere technicity, an essential asset of our work 
could be lost.

If AI is to be embraced as a decision-making 
tool or clinical support system, healthcare providers 
can focus on “higher-order” clinical decision-
making and patient care10. However, caregivers 
should know about the variables on which AI 
algorithms are based and whether and how they 
can overrule machine learning if necessary. 
Therefore, anesthesiologists should partner with 
engineers and computer specialists to avoid the 
well-known problem of the “black box” and gain 
full transparency into how clinical decisions are 
made. Furthermore, this multidisciplinary approach 
should involve data scientists, ethicists, project 
managers, analysts and end users63.

Last, the main goal for the implementation of AI 
is to reduce workload and simplify different data 
streams. However, with just another machine in 
the OR, it must be prevented AI itself causes data 
overload.

Legal and ethical framework

Before new AI strategies are implied in daily 
practice, accountability should be defined: the 
software engineers or the physician using this new 
type of technology.

Specialists in medical ethics will have to discuss 
whether it is ethical to partially or even entirely 

rely on autonomous thinking machines and their 
predictions64.
We must ensure that human interaction will not be 
lost and that our patients are given the empathy and 
human reassurance they need65.

The question arises how the certification of this 
software will be granted and how this certification 
can be renewed when the software is updated with 
new data gained from clinical exposure. 

Costs

Not a single article mentioned the purchase price or 
maintenance costs of the software program tested 
and the devices needed to implement it in clinical 
practice. 

We found that AI technology will trigger an 
estimated $147 billion market during the next 20 
years and hereby transform the medical field66. 
Although AI could be a solution to (partially) face 
the problems caused by the increasing workforce 
shortage and economization, this technology on its 
own will be associated with considerable costs.

Safety

Several concerns about the “black box” within the 
AI systems have been brought forward67. The way 
machines learn is not transparent at all. However, 
it is vital for healthcare providers to know why 
AI took a certain decision and how interference is 
possible68.

AI reasoning, without clinicians knowing the 
variables on which certain predictions are based, is 
associated with important risks of safety.
Likewise, cybersecurity is also of utmost 
importance to prevent hacking of AI-based medical 
applications with potentially deadly consequences.
 
Discussion

In this review, we discussed the omnipresence of AI 
in medicine. We gave an overview and definitions 
of frequently used AI terminology. Secondly, 
we gave an overview of previous research within 
the field of anesthesiology and categorized our 
findings with regard to applications in pre-, intra- 
and postoperative care, intensive care and teaching. 
These categories correspond to the relevant steps in 
the anesthetic workflow.

Our findings are similar to other published work. 
Two papers were issued with a scope corresponding 
with ours8,9. However, the strength of the present 
paper is not only to frame AI-related definitions, 
but also to summarize and categorize current 
publications and offer critical remarks and concerns. 
Moreover, we included very recent articles, serving 
as an update on previously published reviews.



192 ActA AnAesth. Bel., 2023, 74 (3)

healthcare”, anesthesiologists will have to reinvent 
themselves to make sure the art of anesthesia will 
not be lost and still be able to perform anesthesia 
without relying on technical tools, not always 
available in critical situation 71.
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