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Abstract

Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by an acute, diffuse 
inflammation leading to pulmonary edema and hypoxemia. The pathophysiology of the lung failure in COVID-
19 ARDS is a combination of the viral infection and the immune response of the host. ARDS due to COVID-19 
appears to be similar to the non-COVID-19 ARDS, with exception of hypercoagulability. The mortality due 
to ARDS remains high and the treatment focuses on supportive measures, such as lung-protective ventilation 
strategy with small tidal volumes, low driving pressures and PEEP-titration, early consideration of prone 
positioning and a restrictive fluid management. Oxygen should be titrated, and permissive hypercapnia might 
be necessary to achieve lung-protective ventilation. The use of extracorporeal membrane oxygenation (ECMO) 
in COVID-19 ARDS is restricted as a rescue therapy in patients who remain hypoxemic. ECMO should be 
reserved to experienced ECMO centers. Prophylactic anticoagulant therapy is indicated to reduce the formation 
of thrombi in the microcirculation of organs, especially in the pulmonary microvasculature. Steroids may 
reduce the host’s immune response and improve mortality in patients requiring oxygen supplementation or 
invasive ventilation.

Keywords: Acute Respiratory Distress Syndrome, COVID-19, Pulmonary Ventilation, Antiviral Agents, 
Dexamethasone.

Definition of acute respiratory distress syndrome 

Acute respiratory distress syndrome (ARDS) is 
a life-threatening condition, caused by acute and 
diffuse inflammation of the lung tissues. 

ARDS is characterized by an acute onset (1 
week or less) of hypoxemia with a PaO2/FiO2 ratio 
of less than 300 mmHg (partial pressure of arterial 
oxygen divided by the fraction of inspired oxygen) 
with a minimum of 5 cm H2O positive end-
expiratory pressure (PEEP) (490 Pa). Chest X-ray 
is characterized by bilateral infiltrates, consistent 
with pulmonary edema that cannot be explained 
by cardiac failure or fluid overload1. Injury to the 
alveoli increases the endothelial permeability, often 
resulting in pulmonary edema and impairment of 
the alveolar-to-arterial gas exchange (Figure 1). 
This leads to secondary pulmonary shunting and 

hypoxemia. The initial exudative phase is often 
followed by a proliferation of fibroblasts, and 
eventually, lung fibrosis.

Etiologies of ARDS include direct and indirect 
lung injuries, such as pneumonia, aspiration, 
contusion, inhalation injuries, sepsis, pancreatitis, 
trauma and transfusion. More recently, the viral 
pneumonia in COVID-19 has been associated 
with severe ARDS, with mortality rate between 
25-55%2. Non-COVID-19 ARDS has a reported 
mortality rate of approximately 40%3. Treatment 
focuses on supportive management as there are no 
specific treatments of documented outcome benefit. 
ARDS management remains challenging because it 
is often associated with multiple organ failure, such 
as acute kidney injury and cor pulmonale (seen in 
25% of patients with ARDS)4,5.
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Fig. 1 — Graphic representation of normal lung alveoli versus 
lung alveoli affected by ARDS. Used with permission from 

www.NYSORA.com.

Fig. 2 — Pathophysiology of ARDS in COVID-19 patients. 
Spike proteins from the SARS-CoV-2 bind to angiotensin-
converting enzyme-2 on type 2 alveolar epithelial cells. This 
viral infection causes cells to release chemokines and cytokines. 
Furthermore, epithelial cells might die via pyroptosis from the 
infection, resulting in the release of inflammatory damage- 
and pathogen-associated molecular patterns. Recognition 
of these molecular patterns and cytokines activates alveolar 
macrophages, while chemokines recruit inflammatory immune 
cells to the affected lung. The resultant release of antimicrobial 
effectors (i.e., metallomatrix proteases, elastases, and reactive 
oxygen species) induce collateral tissue injury, leading to loss 
of epithelial and endothelial barrier integrity, and infiltration 
of proteinaceous fluid into the alveolar airspace. Moreover, 
endothelial cells play a role in initiating inflammation and 
the development of pulmonary intravascular coagulopathy, 
commonly observed in COVID-19 patients. Components of the 
figure were modified from Williams et al., Acute respiratory 
distress syndrome: contemporary management and novel 
approaches during COVID-19, Anesthesiology 2021.5 Used 

with permission from www.NYSORA.com. 

Specificities of ARDS associated with COVID-19 

During the early experience with COVID-19 
pandemic, clinicians recognized that ARDS in 
COVID-19 patients causes severe hypoxemia 
often accompanied by a near normal respiratory 
compliance. This led to the classification of 
distinction of low versus high elastance subtypes6,7. 
‘Subtype L’ with low lung elastance is present 
in most patients in the early stage, which could 
deteriorate in some patients to a phenotype 
’type H’ with high elastance (low compliance). 
This distinction in subtypes could result in 
different ventilatory management strategies 
of ARDS8. However, non-COVID-19 ARDS 
is also characterized by a high heterogeneity9, 
and more research showed similarities in the 
pathophysiological features of COVID-19 and non-
COVID-19 ARDS10. The mortality rate of COVID-
19 ARDS appears to be similar to the mortality due 
to severe non-COVID-19-related ARDS (around 
40%), although the figures substantially vary 
among different countries and institutions2,11.

With our increasing experience and 
understanding of COVID-19 during the pandemic, 
clinical evidence could not support a substantially 

different treatment strategy in COVID-19 ARDS 
versus non-COVID-19 ARDS. The ventilatory 
management in COVID-19 ARDS is focused 
on correct timing of intubation and mechanical 
ventilation, a lung-protective ventilation strategy, 
permissive hypercapnia, and PEEP titration12.

Despite similarity in pathophysiological 
processes, critically ill COVID-19 patients are 
uniquely prone to developing hypercoagulability. 
Microvascular thrombosis within the lung 
vasculature additionally leads to ventilation-
perfusion mismatch and right ventricular stress 
(Figure 2)13. This is not observed in non-COVID-19-
associated ARDS. The dysregulated inflammation 
and the direct injury to endothelial cells by the 
severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) contribute to the formation of 
immunopathological microthrombi by activating 
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the coagulation cascade and circulating platelets. 
The endothelial cell damage further impairs 
hypoxic pulmonary vasoconstriction, which 
occurs in response to hypoxia and restricts blood 
flow to poorly ventilated lung areas. Disruption in 
this physiologic adaptation in COVID-19 patients 
results in a sustained supply of blood to the injured 
parts of the lungs, which leads to shunting of 
oxygen-poor blood.

Clinical Treatment Concepts

The role of non-invasive ventilation and high-
flow nasal cannula (HFNC) in the treatment of 
COVID-19 related ARDS 

Like in non-COVID-19 ARDS, the primary problem 
in COVID-19 ARDS is hypoxemic respiratory 
failure. With both, a non-invasive approach is 
preferred as an initial treatment strategy14. While 
bilevel positive airway pressure (BIPAP) i.e. non-
invasive positive pressure ventilation (NIPPV) may 
be effective in patients with hypoxemic respiratory 
failure due to cardiogenic pulmonary edema, this 
approach has a high failure rate in respiratory 
failure of other etiologies15. In COVID-19 ARDS, 
there is growing evidence that BIPAP may lead 
to patient self-induced lung injury (P-SILI) by 
overinflation of the lung parenchyma16,17. The 
use of high-flow nasal cannula (HFNC) on the 
other hand decreases the need for intubation 18 
and has other advantages19. Avoiding the use of 
sedatives allows more effective expectoration of 
secretions, oral nutrition, and self-pronation, for 
improvement in oxygenation. Initial concerns for 
a high viral transmission to health care personnel 
with HFNC have proven unnecessary20,21. However, 
if oxygen administration and non-invasive 
support are not sufficient, vigorous inspiratory 
effort may worsen tissue damage and can cause 
patient self-induced lung injury (P-SILI)16,17. The 
possible downside of using HFNC may therefore 
be the risk of postponing intubation, and higher 
mortality15,22,23. The ROX index ([SpO2/FiO2]/
breathing frequency) is proven successful in the 
identification of patients at risk for HFNC failure 
and progression to intubation24,25.  An alternative 
to the delivery of oxygen with HFNC is a helmet 
non-invasive ventilation. The administration of 
continuous positive airway pressure (CPAP) leads 
to less atelectatic regions and a more homogenous 
distention of lung parenchyma. The HENIVOT 
trial comparing HFNC and helmet non-invasive 
ventilation showed no significant difference for the 
days free of respiratory support within 28 days26.

Mechanical ventilation strategies in COVID-19 
related ARDS

The goal of invasive ventilation in ARDS patients 
with COVID-19 infection is to improve both 
oxygenation and ventilation. Ideally, this would be 
achieved while minimizing the risk of ventilator 
induced lung injury (VILI). ARDS causes 
atelectasis, interfering with effective oxygenation 
and ventilation. The ‘open lung concept’ is a 
theoretical solution that relies on recruitment 
maneuvers to keep the lung open with PEEP while 
using low tidal volumes (Vt) to avoid barotrauma27. 
A common recommendation is ventilation with 
6 mL/ kg-1 of the predicted body weight with a 
maximum plateau pressure (Pplat) of 30 cmH2O 
and a driving pressure of <15 cmH2O (figure 
3)28,29. Ventilation exceeding these thresholds may 
increase the risk of mortality30,31. The respiratory 
rate is adjusted for an acceptable partial pressure of 
PaCO2. Permissive hypercapnia might be necessary 
to achieve lung-protective ventilation and reduction 
of the risk of lung injury32. Maintaining the pH 
>7.25 with a PaCO2 of 60 mmHg is considered 
to be acceptable in patients with COVID-19 
ARDS33,34. Failure to achieve these goals requires 
rescue strategies, such as prone ventilation, or 
extracorporeal mechanical oxygenation.

 

Fig. 3 — Conventional ventilation (A) versus protective 
ventilation using small tidal volumes (B). Conventional 
ventilation leads to alveolar overdistension (at peak inflation) 
and collapse (at the end of exhalation). Protective ventilation 
administers small tidal volumes and ensures an adequate 
positive end-expiratory pressure, thereby limiting overinflation 
and end-expiratory collapse. Modified from Malhotra A., 
Low-tidal-volume ventilation in the acute respiratory distress 
syndrome, N Engl J Med 2007.89 Used with permission from 

www.NYSORA.com.

The role of PEEP in the management of ARDS

PEEP reduces atelectasis trauma (repetitive opening 
and closing of alveoli) by recruiting collapsed 
alveoli and therefore reduces ventilation perfusion 
mismatch (Figure 4). Higher PEEP values improve 
survival among the subgroup of patients with ARDS 
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to a degree of hypoxic pulmonary vasoconstriction 
in the dependent/atelectatic regions and extrinsic 
vessel compression45. Proning improves ventilation 
in dorsal segments which leads to a reduction in 
ventilation perfusion mismatch. This in turn allows 
for reduction in the driving pressure, respiratory rate 
and/or PEEP, all consistent with lung-protective 
ventilation46. Langer et al. applied proning in 61% 
of the COVID-19 patients with ARDS, resulting in 
improvement of the PaO2/FiO2 ratio in the majority 
of patients (≥20 mmHg)47. In the PROSEVA trial, 
proning was helpful in patients with severe ARDS 
(PaO2:FiO2 ratio of <150 mmHg with an FiO2 of 
at least 0.6 and a PEEP of ≥5 cmH2O)44. Based on 
the available data and current clinical experience, 
proning should be used early in the course of 
ARDS and applied for 12-16 hours at a time46.

The role of conservative oxygenation in ARDS 
patients

The ARDS Clinical Trials Network recommends 
that the target partial pressure of arterial oxygen 
(PaO2) in ARDS is 55 to 80mmHg36. Too liberal 
administration of oxygen can result in hyperoxia 
associated with peripheral vasoconstriction, 
decreased cardiac output, absorption atelectasis 
and increased inflammatory response. In the 
LOCO2 trial, Barrot et al. hypothesized that 
targeting the lower limit of this range would 
improve outcomes in patients with ARDS48. 
However, the trial was terminated early due 
to increased 28-day mortality and mesenteric 
ischemia episodes in the conservative oxygen 
group (target PaO2: 55-70 mmHg; target oxygen 

who show improved oxygenation in response to 
increased PEEP35. The ARDSNet has developed 
pragmatic tables to optimize the FiO2 and PEEP 
based on oxygenation36. However, not all patients 
respond well to PEEP. A personalized PEEP is 
achieved by finding the PEEP value at which the 
lung has the best compliance (tidal volume divided 
by the driving pressure). In practice, an incremental 
PEEP trial can be used, while checking for the 
highest compliance. The downside of recruitment 
maneuvers are overdistention of the healthy alveoli 
and the risk of damage37,38. The maneuver must be 
carried out with caution and not too often (twice 
a day)39. Although the use of high PEEP increases 
the arterial oxygen tension, it can paradoxically 
decrease the tissue oxygen delivery by reducing 
the cardiac output40. Other parameters such as 
central venous pressure, mean arterial pressure and 
cardiac output with oxygen delivery (DO2) can be 
measured to devise a personalized optimal PEEP.

The role of prone positioning on the outcome 

The prone ventilation (“proning”) more evenly 
distributes the dorsal lung space’s gravitational 
force, and decreases alveolar distention 41 
(Figure 5), as opposed to the supine position, 
where the collapse of the dependent lung areas 
and distention of non-dependent regions is more 
likely to occur. Importantly, proning decreases 
alveolar collapse and overdistention with less 
mediastinal pressure on the lungs, improving the 
homogenization of alveolar ventilation42–44.
In ARDS, the distribution of perfusion is less 
dependent on gravity. This effect is probably due 

 

Fig. 4 — Optimal PEEP (A) versus no PEEP (B). Using an optimal PEEP allows the 
alveoli to remain open during expiration, which facilitates oxygen diffusion and reduces the 
required amount of pressure to expand the lung upon inhalation. Modified from MedicTests, 

Positive end-expiratory pressure. Used with permission from www.NYSORA.com.
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Fig. 5 — Supine versus prone positioning during mechanical ventilation. In the supine 
position, the ventral transpulmonary pressure (PTP) exceeds the dorsal PTP, resulting in 
greater expansion of the ventral alveoli than the dorsal alveoli. ARDS exaggerates this effect. 
The ventral alveoli become overdistended and dorsal alveoli atelectatic (dark purple). Prone 
positioning reduces the difference between the dorsal and ventral PTP, making ventilation 
more homogeneous. This ultimately decreases the alveolar collapse and overdistension. 
Modified from Malhotra A. et al., Prone ventilation for adult patients with acute respiratory 

distress syndrome, UpToDate 2020.43 Used with permission from www.NYSORA.com.

saturation (SpO2): 88-92%) compared to the liberal 
oxygen group (target PaO2: 90-105 mmHg; target 
SpO2: ≥96%). Most recent evidence suggests that 
a target PaO2 of 60-90mmHg may be the optimal 
compromise49.

Fluid balance in ARDS

Management of the fluid balance in ARDS can 
be challenging. A too liberal fluid administration 
may worsen pulmonary edema, hypoxemia 
and prolong mechanical ventilation, ICU stay, 
hospitalization, and increase the risk of mortality50. 
In FACTT trial, a restrictive fluid management 
improved lung function and shortened duration of 
mechanical ventilation, although a survival benefit 
remains unanswered51. However, a too restrictive 
fluid management can jeopardize extrapulmonary-
organ perfusion. As an example, a follow-up 
study of the cognitive function in survivors of 
the FACTT trial demonstrated an association 
of a low central venous pressure with cognitive 
impairment52. In summary, fluid management 
in ARDS with COVID-19 is challenging, and it 
requires synthesis of several clinical, laboratory, 
and radiographic parameters for clinical decision 
making.

Extracorporeal membrane oxygenation in 
COVID-19 ARDS patients 

Extracorporeal membrane oxygenation (ECMO) is 
used as rescue therapy in ARDS patients who fail 

to improve on mechanical ventilation management.  
The 2009 Conventional Ventilatory Support versus 
Extracorporeal Membrane Oxygenation for Severe 
Adult Respiratory Failure (CESAR) trial group 
reported a significant survival benefit in adult 
patients with severe but potentially reversible 
respiratory failure who met certain criteria (Murray 
score or pH)53. For this benefit to realize, the 
group recommended transferring these patients 
to centers experienced with ECMO. In contrast, 
the 2018 ECMO to Rescue Lung Injury in Severe 
ARDS (EOLIA) trial demonstrated no statistically 
significant differences in mortality between the 
ECMO group and the control group54. However, 
28% of patients in the control group crossed over 
to the ECMO group as a rescue therapy, which 
reduced the mortality in the ECMO group by 
11%. These results established an advantage for 
the early use of ECMO compared to conventional 
care with late rescue ECMO in ARDS. Survival 
decreases with prolonged exposure to mechanical 
ventilation (MV) before ECMO, especially after 
seven days of MV55,56. In patients with COVID-19, 
high mortality in the initial published experience 
with ECMO led some clinicians and investigators 
to recommend withholding ECMO support in the 
management of COVID-19 ARDS. More recent 
data from highly experienced ECMO centers 
however show a similar survival rate in ECMO 
for COVID-19 ARDS compared with ECMO for 
non-COVID-19 ARDS57. Therefore, ECMO is 
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best restricted as a rescue therapy in COVID-19 
patients with respiratory failure unresponsive to 
optimized conventional care58. ECMO is typically 
initiated for a COVID-19 patient when duration 
of mechanical ventilation has been less than 
seven to ten days, although there are no data to 
support a clear cutoff59,60. The additional impact of 
prolonged exposure to high-flow nasal cannula or 
non-invasive positive-pressure ventilation before 
mechanical ventilation is currently unknown.

Analgesia, sedation, and the use of muscle 
relaxants 

Recent guidelines recommend the use of light 
sedation in ventilated patients61. Oversedation 
leads to a loss of muscle mass of the diaphragm and 
accessory respiratory muscles, with associated risk 
of weaning difficulties and respiratory infections. 
In patients with severe COVID-19 related ARDS 
(PaO2/FiO2 ratio ≤ 150 mmHg) however, lung 
protective ventilation is the most important goal, 
which may not be achieved by using ASB (assisted 
spontaneous breathing)62.For these patients a 
deeper level of sedation is often required to 
reduce the patient’s breathing efforts and facilitate 
mechanical ventilation. The pharmacologic 
approach to this goal has not been standardized and 
can be accomplished with a combination of agents, 
such as midazolam, ketamine, dexmedetomidine, 
propofol, remifentanil, piritramide (Figure 6). Care 
should be taken when using a propofol infusion 
because of the risk of hypertriglyceridemia63. If 
lung-protective ventilation cannot be achieved, the 
use of a continuous infusion with a neuromuscular 
blocking agent (NMBA) can be necessary. For 
COVID-19 patients, cisatracurium is often the 
muscle relaxant of choice (NMBA), because its 

 

Fig. 6 — Management of analgesia, sedation, and the use of muscle relaxants.
Used with permission from www.NYSORA.com.www.NYSORA.com.

elimination is independent of renal- and hepatic 
function, and it has a possible intrinsic anti-
inflammatory effect64. Early administration of a 
NMBA in patients with severe ARDS improved 
survival in the ACURASYS trial65, however, this 
effect was not proven in the ROSE trial66. The most 
recent guidelines do not support the early routine 
use of a NMBA infusion but state that an infusion 
for up to 48h is a reasonable option to facilitate 
lung protective ventilation67,68. 

The role of antiviral therapy in COVID-19 
patients 

Antiviral therapies target specific viral components 
necessary for SARS-CoV-2 replication and 
pathogenicity. 

Remdesivir, an inhibitor of viral RNA-
dependent RNA polymerase, is currently the most 
investigated antiviral drug. The Adaptive COVID-
19 Treatment Trial (ACTT-1) by Beigel et al. 
demonstrated a statistically significant reduction in 
recovery time in hospitalized COVID-19 patients 
receiving remdesivir but not in the critically ill.69 
There was no significant reduction in mortality. At 
the time of the writing of the current review article, 
the WHO guidelines on COVID-19 treatment do 
not recommend the use of remdesivir in COVID-
19 patients. 

Recently, three anti-SARS-CoV-2 monoclonal 
antibody products have received urgent FDA 
clearance for the treatment of mild to moderate 
COVID-19 in nonhospitalized patients at 
high risk for progressing to severe disease or 
hospitalization.70 The products are Casirivimab 
plus Imdevimab, Bamlanivimab plus Etesevimab 
and Sotrovimab. The distribution of Bamlanivimab 
plus Etesevimab is currently paused because of 
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a reduced susceptibility to the Gamma and Beta 
COVID variants of concern. Risk factors for 
disease progression include age ≥ 65 years, obesity, 
diabetes, and chronic lung disease.

Tocilizumab is a monoclonal antibody against 
the interleukin-6 (IL-6) receptor, blocking IL-6 
signalling and reducing inflammation. The 
RECOVERY trial 71 and the REMAP-CAP trial72, 
the two largest randomized controlled tocilizumab 
trials, have both reported a mortality benefit of 
tocilizumab in patients recently hospitalized 
(i.e. 3 days or less) with rapid respiratory 
decompensation requiring high-flow oxygen, non-
invasive ventilation or invasive ventilation and 
have increased markers of inflammation. Based on 
these trials, the NIH (National Institutes of Health) 
recommends the use of Tocilizumab in addition to 
dexamethasone in these patients73. 

Several other antiviral treatments for COVID-
19 patients that have been tested include 
hydroxychloroquine74,75, an antimalarial drug, and 
lopinavir-ritonavir76, a protease inhibitor cocktail 
used in treating the human immunodeficiency 
virus. Both showed efficiency in vitro but not in 
patients. 

The use of anticoagulants and thrombolytics in 
COVID-19-associated ARDS 

Thrombotic coagulopathy is uniquely common 
in COVID-19 patients. Several studies reported 
a higher prevalence of thrombotic complications 
in COVID-19 ARDS in comparison with non-
COVID-19 ARDS. Anticoagulants, such as heparin 
and low molecular weight heparin (LMWH), can 
reduce thrombi in the microcirculation, especially 
in the pulmonary vasculature. Studies have shown 
a reduced mortality with the use of anticoagulation 
therapy in patients with COVID-19 related 
ARDS77,78. These studies led to the recommendation 
of thrombosis prophylaxis in all patients with 
COVID-19 admitted to the ICU79,80. However, the 
appropriate dose of anticoagulants is yet to be 
determined81. Recent data published in the New 
England Journal of Medicine suggest a positive 
effect of therapeutic-dose anticoagulation with 
heparin in noncritically ill patients with COVID-
19 admitted to the hospital. The positive effect 
was seen on survival to hospital discharge with 
reduced use of cardiovascular or respiratory organ 
support82. In critically ill patients, however, the use 
of therapeutic-dose anticoagulation with heparin 
did not show positive effects in comparison with 
usual-care pharmacologic thromboprophylaxis83. 
The therapeutic use of direct oral anticoagulants 
should also be avoided in the absence of evidence-

based indications, as it does not improve clinical 
outcomes and increases the risk of hemorrhagic 
complications84. 

Treatment with thrombolytics has also been 
proposed in COVID-19-associated ARDS. Case 
series of COVID-19 ARDS patients showed 
some level of improvement in oxygenation and/
or hemodynamics after treatment with tissue 
plasminogen activator in all patients, but ultimately 
most patients deceased85,86.

The role of dexamethasone in COVID-19 ARDS

ARDS in COVID-19 patients is characterized by 
diffuse lung damage, caused by a combination of 
the viral infection and the host’s immune response, 
leading to organ failure. As corticosteroids suppress 
the host immune system, it was empirically used 
to decrease organ damage87. Recent data from 
the United Kingdom Randomized Evaluation 
of COVid-19 thERapY (RECOVERY) trial in 
hospitalized COVID-19 patients showed that the 
administration of dexamethasone does improve 
mortality88. Mechanically ventilated patients 
randomized to receive 6 mg daily for up to 10 
days (with a median treatment duration of 7 
days) had a reduction in 28-day mortality by one-
third compared to patients undergoing standard 
care. Interestingly, this mortality benefit was 
only observed in patients requiring oxygen or 
invasive mechanical ventilation, but not in patients 
receiving no respiratory support. In response 
to these findings, current COVID-19 treatment 
guidelines from the National Institutes of Health 
recommend dexamethasone’s use in mechanically 
ventilated patients or patients requiring oxygen 
supplementation.

Other investigational therapeutic approaches

Trials investigating β2-adrenergics, ketoconazole, 
lisofylline, vitamin C and D, omega fatty acids, 
and statins did not show decreased mortality in 
ARDS patients. However, recent advancements 
in understanding ARDS pathophysiology indicate 
the importance of injury subtypes that may help to 
predict beneficial responses to particular therapies. 
Appropriate identification and selection of 
patients with specific ARDS sub-phenotypes may 
lead to more efficient clinical trials and targeted 
treatments.
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